
Department of Computer Science
MASTER’S DEGREE IN COMPUTER SCIENCE

ARTIFICIAL INTELLIGENCE CURRICULUM

ISSUE REPORT CLASSIFICATION USING
BERT

Thesis in Software Engineering for AI-Enabled Systems

Supervisors: Graduating Candidate:
Prof. Filippo Lanubile Giuseppe Colavito
Prof. Nicole Novielli

19 July 2022

Table of Contents

1 Introduction . 3
1.1 Thesis structure . 4

2 Background . 5
2.1 Issue Tracking . 5
2.2 Text Classification . 9
2.3 Pretrained Language Models . 10

2.3.1 Transformers and Attention . 10
2.3.2 BERT . 14

3 Issue Report Classification . 16
3.1 Related work . 16
3.2 Challenge description . 18

3.2.1 Dataset . 19

4 Methodology . 22
4.1 Research questions . 22
4.2 Pre-processing . 22
4.3 Model fine-tuning . 23
4.4 Training the Issue Classifiers . 25
4.5 Evaluation . 28

5 Results . 29
5.1 Comparison . 29

6 Discussion . 33
6.1 Error Analysis . 33

6.1.1 Error Examples . 34
6.2 Handling noise . 37

7 Conclusions . 41
7.1 Future Works . 41

List of Figures . 43

1

List of Tables . 44

References . 45

2

1. Introduction

Automatic classification of issue types is crucial to support effective issue management and
prioritization. Software developers, testers and customers routinely submit issue reports to
software issue trackers to record the problems they face in using a software. The issues
are then directed to appropriate experts for analysis and fixing. However, submitters often
misclassify an improvement request as a bug and viceversa. This costs valuable developer
time. The person filing the issue may not always make a fine-grained distinction between
the different kinds of reports and instead file them as bugs only. In fact, research shows
misclassifications are commonplace [1, 2]. In an elaborate study involving more than 7000
issues spanning 5 projects, researchers found that 33.8% of all reports are misclassified
[2]. The consequence of misclassification could be costly: developers must spend their
precious time to look into the reports and relabel them correctly. This is necessary also to
understand which team should take charge of the issue. Hence it is worthwhile to explore
if this classification can be done automatically, since it would be of great practical utility.
[3].

Previous studies have proposed supervised approaches to address the task of automat-
ically predicting the label to assign to a new issue. Early studies leveraged traditional
machine learning, such as decision trees, naive Bayes classifiers, and logistic regression in
combination with text-based features, achieving performance between 77% and 82% of
accuracy [1]. More recently, researchers started to use deep learning and, in particular, for
natural language processing, pre-trained language models, such as BERT and its variants [4,
5].

Kallis et al. [6, 7] proposed Ticket Tagger, which automatically predicts the labels to assign
to issues at write time, with the aim of facilitating the issue management and prioritization
processes. Ticket Tagger is a machine learning classifier that predicts the label to assign
to issues trained on GitHub data. Specifically, Ticket Tagger leverages only the textual
content of an issue title and body, whose vectorial representation is based on fastText [8],
an open-source tool released by Facebook AI research.

In this work, we describe the systems we developed to participate in the tool competition
of NLBSE’22 on automatic labeling of GitHub issues. The goal of the NLBSE’22 tool
competition [9] is to build a classifier for automatic issue report classification. Ticket

3

Tagger [6, 7] is identified by the challenge organizer as the baseline system and all
participants are invited to compare the performance of the proposed system with it (F1 =
.8591). The organizers provided a dataset including more than 800K GitHub issue reports
labeled as either bug, enhancement, or question, in line with the intent of the author of the
issue [6, 7]. All issues are extracted from real open-source projects. The participants were
invited to use the dataset to train and evaluate an approach for automatic classification of
the three issue types in the dataset:

■ bug,
■ enhancement,
■ question.

Inspired by recent advances in distributional semantics [10, 11, 12], we aim at assessing to
what extent the text information only could be used to enhance the state of the art in auto-
matic issue labeling. Specifically, we propose and evaluate two different approaches based
on supervised learning that leverage the information available at the time of writing, that is
the title and body of the issue and the issue-author association relation (e.g., collaborator,
owner, etc.). We experiment with fine-tuning of BERT [10], a task-agnostic pre-trained
language-model released by Google, and its variants ALBERT [12] and RoBERTa [11]. To
combine text and author information we also train a multilayer perceptron (MLP) classifier
that leverages the BERT-based embedding of the issue with a one-hot encoding representa-
tion of the author-issue relation. Both models outperform the baseline and we observe the
best performance (F1 = .8591) with the model based on textual information only. All the
replication material is available on GitHub [13]. We then perform an error analysis which
is useful in order to understand the main causes of errors in the classification of the test set.

1.1 Thesis structure

In the second chapter, a general theoretical background for issue tracking and pretrained
language models is given, along with a glance at the language models that have been
taken into consideration for this thesis. In the third chapter we describe the issue report
classification task, the NLBSE22 challenge and give all the details about the dataset used
for our study. In the fourth chapter we describe the methodology used for solving the issue
report classification task. In the fifth chapter we show the results of our studies, followed
by a discussion about results and errors performed by the classifier in the sixth chapter. In
the seventh chapter we report the conclusions together with possible future works.

4

2. Background

2.1 Issue Tracking

Just as strong leadership is required to guide a team toward success, so too are strong com-
munication and collaboration tools essential in completing that journey. Much research has
been done in the field of computer-supported cooperative work and software engineering to
examine how software teams communicate with each other and coordinate their work. The
majority of developers spends their time interacting with co-workers [14]. Other studies
argued that software development is both knowledge-intensive and collaborative [15]. De-
velopment teams use Issue Tracking Systems (ITS) such as Bugzilla, Github Issues, GitLab
Issues, JIRA to track issues, including bugs to be fixed or features to be implemented. Over
the years ITS have emerged as a central tool for planning and organizing development
work [16], and for communicating with users and other stakeholders [17] [18].

Figure 1. Bugzilla, list of bugs in the KDE project, from [19]

5

In a project, new requirements are coming constantly. So, it is necessary to have tools
which allow somebody to fully and easily:

■ share the information across the team;
■ have an instant overview of the state of the software;
■ expertly decide about releasing;
■ set and update the importance of individual fixes and adjustments;
■ have a recorded history of changes.

An issue tracking system has the main function to track:

■ what should be fixed or created;
■ what the bug symptoms and appearances are, what actually doesn’t work;
■ how it should work the right way;
■ who reported the request, who confirmed, analyzed, implemented the solution, and

verified it;
■ when the request was reported, when it was fixed and when verified;
■ what led to the decision to choose one way of fixing instead of another;
■ what changes in code were made;
■ how long it took to handle the request.

Those insights about the state of the project are really useful for the developing team and,
if used in the right way, can bring the following benefits:

■ improve the quality of software;
■ increase satisfaction of users and customers;
■ ensure requests accountability;
■ improve communication in the team and also to customers;
■ increase of productivity of the team;
■ reduce expenses [20].

Issue trackers are often used by open-source development teams and they are a primary
and logical location for much of the distributed negotiation involved in resolving bugs,
through extended interactions that involve debate among developers, reaching consen-
sus, or soliciting management input [21, 22]. Works on issue tracking systems that has
primarily focused on improving the quality of bug reports [16], identifying who should
work on a given issue [23], and improving developers’ ability to detect defects in their

6

systems [24] [17].

Issues are units of information usually including a summary (title), a description, and a
number of properties like status, priority, and fix version.

Figure 2. An issue tracked by JIRA, from [25]

A key focus of ITSs is the evolutionary refinement of the issues [26] (also known as
iterative improvement), which means that information is gained and refined over time,
while developers and stakeholders collaborate to address the issues. Over the last two
decades, software engineering research has intensively studied issues and issue trackers,
often based on Bugzilla1, Github 2, GitLab3 and Jira4. The primary research focus has
been on the specific issue type of bug reports: the understanding and improvement of
information quality therein [16], and the prediction of bug properties such as severity [27,
28], assignee [29], and duplicate reports [30, 31, 32] for supporting software evolution and
maintenance. [33]
1https://www.bugzilla.org/
2https://www.github.com/
3https://www.gitlab.com/
4https://www.atlassian.com/software/jira

7

https://www.bugzilla.org/
https://www.github.com/
https://www.gitlab.com/
https://www.atlassian.com/software/jira

Figure 3. An issue tracked by GitLab, from [34]

8

2.2 Text Classification

Text classification (TC) is the task of assigning predefined categories to free-text documents.
It can provide conceptual views of document collections and has important applications
in the real world. Instead of manually classifying documents or hand-crafting automatic
classification rules, statistical text categorization uses machine learning methods to learn
automatic classification rules based on human-labeled training documents [35]. TC is
being applied in many contexts, ranging from document indexing based on a controlled
vocabulary, to document filtering, automated metadata generation, word sense disambigua-
tion, population of hierarchical catalogues of Web resources, and in general any application
requiring document organization or selective and adaptive document dispatching. In the
’90s this approach has increasingly lost popularity (especially in the research community)
in favour of the machine learning paradigm, according to which a general inductive process
automatically builds an automatic text classifier by learning, from a set of preclassified
documents, the characteristics of the categories of interest. The advantages of this approach
are an accuracy comparable to that achieved by human experts, and a considerable savings
in terms of expert manpower, since no intervention from either knowledge engineers or
domain experts is needed for the construction of the classifier or for its porting to a different
set of categories [36]. It is useful to distinguish among TC problems based on the number
of class to which a document can belong:

■ Binary classification, if there are only two possible classes (e.g.: spam / non-spam),
■ Multi-class classification, if there are more than two possible classes and each

document can belong exclusively to one of the classes,
■ Multi-label classification, if there are more than two possible classes and each

document can belong to two or more classes.

Multi-class and multi-label problems are often faced by reducing the task to k different
binary classification subtasks, one for each category.

For each binary classification subtask, the members of the category are treated as positive
examples, the others are treated as negative examples [36]. Machine Learning and deep
learning based approaches consist in analyzing annotated corpora of texts inferring which
features of the text, typically in a bag of words fashion [37] or by n-grams, are relevant
for the classification in an automatic way [38]. The most classical approach for text
classification consists of extracting basic corpus statistics such as the word frequency
or TF-IDF [39] to generate large sparse embedding vectors with a size equal to the

9

vocabulary size. In these cases, Latent Semantic Analysis [40] may be useful for reducing
the dimensionality of such vectors through the Singular Value Decomposition (SVD).
As shown in [41], on some occasions, models using TF-IDF, despite being simpler and
unable to capture complex text patterns, can achieve better results than more complex
neural-based approaches [42]. Neural language models learn to represent textual-tokens
(such as words) as dense vectors, referred as to word embeddings, in a self-supervised
fashion. These learned representations can then be used for various NLP applications. One
popular neural language model is word2vec [43], which learns to map the words that come
in similar contexts to similar vector representations. The learned word2vec representations
also allow for some simple algebraic operations on word embeddings in vector space
[44]. Previous work uses various neural models to learn text representation, including
convolution models [45, 41, 46, 47, 48, 49], recurrent models [50, 51, 52], and attention
mechanisms [53, 54] [55]. More recently, the Transformers architecture [56], replacing
the recurrence with the self-attention mechanism, enabled that large pre-trained language
models could now be used to address several NLP tasks, leading to the state-of-the-art in
many of these applications [44]. We will go into the details about pre-trained language
models in the next section.

2.3 Pretrained Language Models

2.3.1 Transformers and Attention

A Transformer is a model architecture eschewing recurrence and instead relying entirely
on an attention mechanism to draw global dependencies between input and output. Most
competitive neural sequence transduction models have an encoder-decoder structure. In
a transformer, the encoder maps an input sequence of symbol representations (x1, ..., xn)

to a sequence of continuous representations z = (z1, ..., zn). Given z, the decoder then
generates an output sequence (y1, ..., ym) of symbols one element at a time. At each step
the model is auto-regressive, consuming the previously generated symbols as additional
input when generating the next. The transformer follows this overall architecture using
stacked self-attention and point-wise, fully connected layers for both the encoder and
decoder.

The encoder is composed of a stack of N identical layers. Each layer has two sub-layers.
The first is a multi-head self-attention mechanism, and the second is a simple, position
wise fully connected feed-forward network. A residual connection around each of the two
sub-layers is employed, followed by layer normalization.

10

Figure 4. Illustration of Tranformers architecture, from [56]

11

The decoder is also composed of a stack of N identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs
multi-head attention over the output of the encoder stack. Similar to the encoder, residual
connections around each of the sub-layers are employed, followed by layer normalization.
The self-attention sub-layer is modified in the decoder stack to prevent positions from
attending to subsequent positions. This ensures that the predictions for position i can
depend only on the known outputs at positions less than i.

The attention function which is used in [56] is called Scaled Dot-Product Attention. The
input consists of queries and keys of dimension dk, and values of dimension dv. The dot
products of the query with all keys is computed, then divided by

√
dk, and apply a softmax

function to obtain the weights on the values. The matrix of outputs is computed as:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V

Instead of performing a single attention function with dmodel-dimensional keys, values
and queries, it is beneficial to linearly project the queries, keys and values h times with
different, learned linear projections to dk, dk and dv dimensions, respectively. On each of
these projected versions of queries, keys and values, the attention function is performed in
parallel, yielding dv-dimensional output values. These are concatenated and once again
projected, resulting in the final values. Multi-head attention allows the model to jointly
attend to information from different representation subspaces at different positions.

MultiHead(Q,K, V) = Concat (head1, · · · , headh)W
O

headi = Attention(QWQ
i , KWK

i , V W V
i)

So we have a new set of parameters (multiple queries, keys and values). The heads are
concatenated and multiplied by a new parameter matrix WO. This setting helps focusing
on more parts of discourse. The Transformer uses multi-head attention in three different
ways:

■ In encoder-decoder attention layers, the queries come from the previous decoder
layer, and the memory keys and values come from the output of the encoder. This
allows every position in the decoder to attend over all positions in the input sequence.

■ The encoder contains self-attention layers. In a self-attention layer all of the keys,

12

values and queries come from the same place, in this case, the output of the previous
layer in the encoder. Each position in the encoder can attend to all positions in the
previous layer of the encoder.

■ Similarly, self-attention layers in the decoder allow each position in the decoder to
attend to all positions in the decoder up to and including that position. It is important
to prevent leftward information flow in the decoder to preserve the auto-regressive
property. We implement this inside of scaled dot-product attention by masking out
(setting to − inf) all values in the input of the softmax which correspond to illegal
connections

So, the encoder start by processing the input sequence. The output of the top encoder is then
transformed into a set of attention vectors K and V. These are to be used by each decoder
in its encoder-decoder attention layer which helps the decoder focus on appropriate places
in the input sequence The self attention layers in the decoder operate in a slightly different
way, they mask future positions before the softmax step in the self-attention calculation.
The encoder-decoder attention” layer works just like multiheaded self-attention, except
it creates its queries matrix from the layer below it, and takes the keys and values matrix
from the output of the encoder stack. [56, 57, 58]

Figure 5. Illustration of the dependencies encoded by the self-attention layers . As we
encode the word "it", one attention head is focusing most on "the animal", while another is
focusing on "tired" – in a sense, the model’s representation of the word "it" bakes in some
of the representation of both "animal" and "tired", from [57]

13

2.3.2 BERT

BERT [10] is a language representation model, which stands for "Bidirectional Encoder
Representations from Transformers". It is designed to pretrain deep bidirectional repre-
sentations from unlabeled text by jointly conditioning on both left and right context in all
layers. The pre-trained BERT model can be finetuned with just one additional output layer
to create state-of-the-art models for a wide range of tasks, such as question answering and
language inference, without substantial taskspecific architecture modifications. BERT’s
model architecture is a multi-layer bidirectional Transformer encoder. There are two
existing strategies for applying pre-trained language representations to downstream tasks:

■ feature-based,
■ fine-tuning

Figure 6. Different variants of BERT, from [59].

Figure 7. BERT creating word embeddings, from [59].

Feature-based approach, such as ELMo [60], uses task-specific architectures that include
the pre-trained representations as additional features.

Fine-tuning introduces minimal task-specific parameters, and is trained on the downstream

14

tasks by simply fine-tuning all pretrained parameters.

The major limitation is that standard language models are unidirectional, and this limits the
choice of architectures that can be used during pre-training. BERT alleviates the previously
mentioned unidirectionality constraint by using a masked language model (MLM) pre-
training objective. The masked language model randomly masks some of the tokens from
the input, and the objective is to predict the original vocabulary id of the masked word
based only on its context. The MLM objective enables the representation to fuse the left
and the right context, which allows us to pretrain a deep bidirectional Transformer. In
addition to the masked language model, the next sentence prediction task is used, that
jointly pretrains text-pair representations.

After BERT’s release, Facebook researchers found out that it was undertrained and that the
next sentence prediction task was not so crucial in the training process. RoBERTa [11] has
the same architecture as BERT but is trained on a bigger dataset, with longer sequences,
without using the NSP task and with some small changes to the masking process used
in the MLM task. AlBERT [12] is a BERT model which leverages parameter reduction
techniques to lower memory consumption and increase the training speed of BERT.

15

3. Issue Report Classification

3.1 Related work

Issue tracking systems are important means for maintainers to enable rigorous yet effective
software evolution tasks. In issue tracking systems maintainers report tickets or potential
problems, manage them and keep track of their progress. But as useful issue tracking
systems might be, many developers still end up with a rapidly growing workload and lose
control of it [61, 62]. Github1 provides an integrated lightweight issue tracking system, in
which issue submitters are only required to provide a short textual abstract, containing a
title and an optional description to report a new issue to a project hosted on GitHub. While
this simplified process of reporting issues decreases the barrier to entry and attracts more
inexperienced external contributors, it complicates the work of the development teams for
maintaining the software, as several hundreds of issues of different nature (e.g., asking
questions, proposing features, signaling bugs) and quality are usually submitted [63].

Figure 8. Example of GitHub issue, from [64].

To cope with these problems, GitHub also offers a customizable labeling system, which
can be used by developers to mark and manage issue reports. In particular, labels can

1https://www.github.com/

16

https://www.github.com/

give immediate clues about the issues (e.g., what sort of topic the issue is about, what
development task the issue is related to, or what priority the issue has) and are also useful for
project administrators, since they can serve both as classification and filtering mechanism,
thus facilitating the managing of the project [65]. However, manually assigning labels
to issues is a labor-intensive and time-consuming task for project managers [63]. Indeed,
although labeling has a positive impact on the effectiveness of issue processing [66], the
labeling mechanism is scarcely used on GitHub [61] [7].

Figure 9. Custom labels in GitHub Issues, from [67].

Previous studies presented several approaches to automatically categorize issues posted
in bug tracking systems. For example, in is showed that machine learning models can be
used in order to discriminate bugs from other kinds of issues. In [2], six different issue
categories are introduced – bug, feature request, improvement request, documentation
request, refactoring request, and others – and demonstrated that often developers and
maintainers assign the wrong issue category to the reports. To address this problem, in
[68] structured data with unstructured free-text data are combined to train a classifier able
to predict with high accuracy if a bug report is actually a bug or another kind of issue.
Unfortunately, no structured information could be found on GitHub issues, according to
the GitHub issue tracking lightweight structure [7]. Recently, Kallis et al. [7] proposed

17

Ticket Tagger, a machine learning classifier that predicts the label to assign to issues trained
on GitHub data. Specifically, Ticket Tagger leverages only the textual content of an issue
title and body, whose vectorial representation is based on fastText [8], an open-source tool
released by Facebook AI research.

3.2 Challenge description

In this work we describe the systems we developed to participate in the tool competition of
NLBSE’22 on automatic labeling of GitHub issues. NLBSE’22 is the 1st International
Workshop on Natural Language-based Software Engineering. It was co-located with
ICSE 2022 and was held on the 8th of May 2022. The first edition of the NLBSE’22
tool competition was on automatic issue report classification, an important task in issue
management and prioritization.

Figure 10. Tool Competition page of the NLBSE’22 workshop

For the competition, a dataset encompassing more than 800k labeled issue reports (as bugs,
enhancements, and questions) extracted from real open-source projects was provided. The
goal was to develop a classification model leveraging this dataset and compare the achieved
results against a proposed baseline approach, TicketTagger (based on FastText) [7, 6]. The
submissions were ranked based on the F1-micro score achieved by the proposed classifiers
on the test set, as indicated in the papers. While the F1-score was used for ranking the

18

models and determining the winner of the competition, the participants were also asked
to report the following metrics: precision, recall and F1 for each class. We report the
formulas below. TP, FP, TN, and FN indicates number of True Positives, False Positives,
True Negatives, and False negatives, respectively. We denote a generic class with c.

Pc =
TPc

TPc + FPc

Rc =
TPc

TPc + FNc

F1,c =
2× Pc ×Rc

Pc +Rc

P =

∑
c TPc∑

c(TPc + FPc)

R =

∑
c TPc∑

c(TPc + FNc)

F1 =
2× P ×R

P +R

Note that micro-average precision and recall are the same as micro-average F1-score. Partic-
ipants were free to select and transform variables from the training set, but no new sources
could have been added. In other words, any inputs or features used to create the classifier,
had to be derived from the provided training set. Practises like preprocessing, sampling,
over/under-sampling, selecting a subset of the attributes, perform feature-engineering, split
the training set into a model-finetuning validation set, etc. were allowed. The evaluation
was performed on the entire test set only. No sampling, rebalancing, undersampling or
oversampling techniques were allowed on the test set [69].

3.2.1 Dataset

The issues in the dataset were extracted from The GitHub Archive [70] using Google
BigQuery [71]. The dataset consists of more than 800K Github issue-reports extracted
from real open-source projects. The organizers of the tool competition selected all the
closed issues during the first semester of 2021 (from January 1st 2021 to May 31st 2021)

19

that contained any of the labels bug, enhancement, and question at the issue closing time.
The dataset was given in CSV format without applying any preprocessing on the issues
[69]. We use this dataset, distributed by the tool competition organizers [9, 6, 7], to take
part to the NLBSE’22 Tool Competition.

For each issue, the following features were collected and made available as dataset:

■ issue url
■ label
■ creation date
■ issue author association
■ repository url
■ title
■ body

The label can be one of the following:

■ bug, which means that the issue contains a bug report to be fixed,
■ enhancement, issues which contain improvement and new feature requests,
■ question, asked by an user about the usage of the software.

Labels can be assigned by the user who opened the issue or by repository maintainers.
In case of multiple labels, the most recent is taken as ground truth. The issue author
association is the role played in the repository by the person who opened the issue. It can
have the following values:

■ owner,
■ contributor,
■ member,
■ collaborator,
■ none,
■ mannequin.

From the set of features, the more relevant for our task are title, body, issue author
association and obviously, the label. The text of title and body is written in Markdown
format. The tool competition organizers distributed the dataset already split in train and test
set, as shown in Table 1. Both the training and the test set were available at the beginning

20

of the Tool Competition.

Table 1. Dataset with label distribution.

Train set Test set
bug 361,103 (50%) 40,288 (50%)
enhancement 299,374 (41%) 33,203 (41%)
question 62,422 (9%) 7,027 (9%)
total 722,899 80,518

The distribution of the labels is the same for both training and test set. Labels are unbal-
anced, with bugs (50%) and enhancement (41%) being better represented than question
(9%), which is the minority class.

21

4. Methodology

4.1 Research questions

With our work we aim at understanding if the issue report classification task can be faced
using only the textual information, using state of the art pretrained language models.

RQ1: To what extent we can leverage pre-trained language models to build an automatic
classifier for GitHub issue labeling?

Furthermore, we aim at understanding if including non-textual information about the issues,
such as the issue-author associaton can improve the performance.

RQ2: To what extent the issue-author association contribute to improve the perfromance
of a classifier modeling textual information based on pre-trained models?

Unfortunately, other non-textual features were not available and it was not possible to
integrate them, as specified in the competition rules. During the competition we analysed
manually some of the issues, noticing that data were very noisy. So, as a follow-up study
after the competition deadline, we tried to filter out that noise from our data to achieve
better performances.

RQ3: How can we filter out noisy data? And how will the classifier perform on the filtered
data?

4.2 Pre-processing

As a first pre-processing step, we identify text patterns indicating non-textual items such as
images, links, code snippets and replace them with ad-hoc tokens (e.g for images).
Then, we perform further text normalization step using ekphrasis Text Pre-Processor1,
which is able to identify other patterns such as:

■ URLs,
1https://github.com/cbaziotis/ekphrasis

22

https://github.com/cbaziotis/ekphrasis

■ email addresses,
■ percent or currency symbols,
■ phone numbers,
■ user mention,
■ time,
■ date,
■ numbers.

This preprocessing step is very common in other studies using pretrained language models
[72, 73, 74, 75, 76]. We replace those items with ad hoc tokens. We use ekphrasis also
to unpack hashtags, contractions and emojis. The idea is that we don’t want to model the
link string, the image name, or the code in our text. We just want to model the presence or
not of such elements. We want to avoid modeling code as normal text in order to avoid
bias on some specific repositories or specific code snippets. Our model should be able to
classify new issues incorporating unseen code (maybe using brand new repositories, which
are never used in the training set). Since the documents will be fed into either BERT or its
variants, we encode all the documents in the dataset using the model-specific tokenizer. To
avoid exceeding the GPU memory capacity, we pad/truncate each document to 128 tokens,
in line with previous work [4].

4.3 Model fine-tuning

We implement a supervised approach by leveraging state-of-the-art models based on
transformers. Specifically, we experimented with fine-tuning of BERT-based models in
two different settings as depicted in Figure 11:

■ In the first setting (Classifier 1 in the figure), we leverage the text content of the issue
(title and body) and fine-tune the language model to obtain the final classifier.

■ In the second setting (Classifier 2 in the figure), we combine the textual information
with the information provided by the author-association field and train a feed-forward
network.

As a preliminary step to both approaches, we need to identify the best pre-trained language
model to use for the issue classification task. In this study, we experiment with three state
of the art pretrained language models:

■ BERT [10],

23

Figure 11. The two classifiers implemented for issue labeling.

■ ALBERT [12],
■ RoBERTa [11].

For BERT, we use both the base model and the large model. To select the best model, we
perform fine-tuning of each model using the train set. Specifically:

■ We split the train set in two subsets, one containing 90% of the issues and the other
containing 10% of the issues.

■ We train each of the models on the first subset.
■ We test each of the models on the second subset (validation set)
■ We compare the performances of all the models to select the best one.

24

This procedure is illustrated in Figure 12. For each language model, the fine-tuning phase

Figure 12. Illustration of the process adopted to select the best BERT model

is done in 4 epochs. To select the best number of epochs for each model, we test all
the models after each epoch. In the training phase we used the Adam optimizer with
weight decay. As optimizer parameters we used a learning rate = 2× 10−5 and a epsilon =
1× 10−8.

Table 2 reports the results of the performance assessment on the validation set for all
models we experimented with. Given the small differences in the overall micro average
F1 observed for all models, we decided to pick as best model the one achieving the best
F1 on the minority class, which is the question class. As a result of this validation phase,
we select RoBERTa as the most promising language model to be used for training the
classifier for the challenge submission.

4.4 Training the Issue Classifiers

Based on the performance observed on the validation set, we decided to use RoBERTa
for training the classifier for the challenge submission, using the full train set provided
by the organizers. As a first step, we fine-tune RoBERTa using the full train set provided
by the organizer. We replicate the same procedure adopted for model selection, i.e. we
fine-tune RoBERTa using the issue title and body, which we pad/truncate to consistently

25

Ta
bl

e
2.

M
od

el
se

le
ct

io
n:

th
e

be
st

pe
rf

or
m

an
ce

ac
hi

ev
ed

on
th

e
va

lid
at

io
n

se
tf

or
al

lfi
ne

-t
un

ed
m

od
el

s.

A
L

B
E

R
T

(3
ep

oc
hs

)
B

E
R

T-
ba

se
(2

ep
oc

hs
)

B
E

R
T-

la
rg

e
(2

ep
oc

hs
)

R
oB

E
R

Ta
(4

ep
oc

hs
)

Pr
ec

R
ec

F1
Pr

ec
R

ec
F1

Pr
ec

R
ec

F1
Pr

ec
R

ec
F1

bu
g

.8
69

5
.8

90
6

.8
79

9
.8

71
2

.9
06

9
.8

88
7

.8
69

4
.9

10
6

.8
89

5
.8

75
6

.8
98

5
.8

86
9

en
ha

nc
em

en
t

.8
61

5
.8

74
.8

67
7

.8
70

9
.8

80
2

.8
75

6
.8

72
2

.8
76

3
.8

74
2

.8
74

3
.8

75
5

.8
74

9
qu

es
tio

n
.6

73
4

.5
32

.5
94

4
.7

14
2

.5
08

3
.5

93
9

.7
25

7
.5

10
4

.5
99

3
.6

66
7

.5
61

2
.6

09
4

m
ic

ro
av

g
.8

52
8

.8
52

8
.8

52
8

.8
61

4
.8

61
4

.8
61

4
.8

61
8

.8
61

8
.8

61
8

.8
59

9
.8

59
9

.8
59

9
m

ac
ro

av
g

.8
01

5
.7

65
5

.7
80

7
.8

18
8

.7
65

1
.7

86
0

.8
22

4
.7

65
8

.7
87

7
.8

05
5

.7
78

4
.7

90
4

26

represent documents with the same length (128 tokens). Then, we use the fine-tuned
RoBERTa model for building the two classifiers. For Classifier 1, we simply rely on the
textual information of the GitHub issues, that is on the concatenation of each issue title
and body. For Classifier 2, we build a multilayer perceptron (MLP) classifier that leverages
the combination of the textual information of the issues with the information regarding the
issue-author association contained in the dataset:

■ We extract the RoBERTa-based embeddings of each document, i.e., the concatenation
of the title and body of the issues, using the last hidden layer before the classification
layer of the fine-tuned model, obtaining a 768 dimension embedding.

■ We compute the one-hot encoding vectors for each value of the issue-author associa-
tion attribute (six dimensions overall, one for each possible value of the issue-author
association attribute).

■ We then concatenate the RoBERTa-based embedding with the one-hot-encoding
representation of the issue-author association information, as illustrated in 13.

Figure 13. Concatenation of the BERT embedding with the issue author association one-
hot encoding vector

The new vector is fed into a multi-layer perceptron with two hidden layers of size 256
and 128, respectively. In order to train the network, we use stratifed sampling to split the
training set into train (90%) and a validation set (10%). The network is then trained with
the following parameters:

■ batch size = 32,
■ learning rate = 1× 10−5

■ Adam optimizer with learning rate = 2× 10−5 and a epsilon = 1× 10−8.

27

■ epochs = 100

We set up and use an early stopping criterion with patience = 5. We use a callback function
to select the model achieving the best performance once the early stopping condition is
verified. For the training, we use NLLLoss and set the weights of the loss function as
inversely proportional to the class frequencies in the training data.

4.5 Evaluation

In line with the guidelines of the challenge, we provide the evaluation of the two classifiers
on the test set in terms of micro-F1. Given the unbalance distribution of the labels in the
dataset, we also report the macro-F1 because micro-averaging is known to be influenced
by the performance on the majority class. Conversely, the ability of a classifier to correctly
identify items belonging to classes with few training instances is correctly assessed by
the macro-average. To address the problem of class imbalance in the training data, we
also experimented with undersampling, thus obtaining a balanced dataset based on the
number of items included in the minority class of questions. However, we observed a
worse performance with respect to the one observed when the full train set in use. As
such, we report the performance of the models trained using the complete train set. The
goal of our experiments is twofold. On the one hand we compare our approaches with
the performance of Ticker Tagger, the FastText-based approach provided as a baseline
by the challenge organizer. Ticket Tagger was originally trained and validated on 30,000
GiHhub issues [6, 7]. To compute the baseline performance for the tool competition, its
performance was reassessed on the challenge test set using the Colab notebook provided
by the organizers. We report the baseline performance in Table 3. We also compare our
models with the other ones submitted for the tool competition. On the other hand we aim at
assessing to what extent a simple approach based on textual information enable automatic
labeling of GitHub issues.

28

5. Results

In Table 3, we report the performance of the two classifiers and provide comparison with
the baseline approach based on fastText. Both our classifiers outperform the baseline and
they achieve a performance comparable to the one reported by previous work on issue
classification based on contextual embeddings [5], as done in this study. In particular,
Classifier 1 (RoBERTa fine-tuned) achieves the best micro F1 (.8591). As for Classifier 2
(MLP), which also includes consideration of the author-issue association, we observe a
lower micro F1 (.8295). However, the recall for the minority class question is substantially
improved up to .7537, as also reflected by the higher macro average recall (.7774 and
.8092 for Classifier 1 and 2, respectively). Albeit the overall performance is substantially
unvaried in terms of micro F1, the choice between the RoBERTa-based and MLP-based
for practical usage might not be trivial as RoBERTa optimizes the precision of the minority
class while the MLP achieves a better recall.

For the sake of the challenge submission, we identify the RoBERTa-based classifier as the
best performing one, given its higher micro-average F1.

Table 3. Performance of the system on the test.

Classifier 1: RoBERTa Classifier 2: MLP FastText Baseline
Title + Body Author + Title + Body Title + Body

Class Prec Rec F1 Prec Rec F1 Prec Rec F1
bug .8750 .8988 .8867 .8934 .8346 .8630 .8314 .8725 .8515
enhanc. .8713 .8743 .8728 .8797 .8394 .8591 .8155 .8464 .8307
question .6760 .5591 .6120 .4727 .7537 .5810 .6521 .3502 .4557
micro avg .8591 .8591 .8591 .8295 .8295 .8295 .8162 .8162 .8162
macro avg .8074 .7774 .7905 .7486 .8092 .7677 .7663 .6897 .7126

5.1 Comparison

Here we report a general overview of the tool competition submissions and results.

■ Izadi [77] proposed CatIss, a fine-tuned pretrained RoBERTa model [11] that uses
(as input) the issue text (title and body) concatenated with the issue timestamp,
author, and repository (the owner and repository name). The processing of the issues
included removal of exact duplicate issues (performed on the training set only), text

29

normalization to replace content with a predefined tag (e.g., <FUNCTION> for
function names), special character removal, and lower-casing. Izadi also reported a
Logistic Regression model as an additional baseline model [69].

■ Bharadwaj and Kadam [78] proposed multiple classifiers based on BERT (vanilla
BERT [10], CodeBERT [79], and RoBERTa [11]) and XLNet [80] to encode the
issue text (title and body) as embeddings. These embeddings are combined with
embeddings obtained from additional issue features, namely whether or not the
issue was submitted early in the project history (defined based on a threshold), the
project owner, and whether or not the issue title describes a question. The combined
embeddings are the input to classification layers. The BERT-based models used by
the authors were also fine-tuned. The main preprocessing applied include regex-
based substitution of code snippets, URLs, usernames, and numbers with predefined
tags [69].

■ Siddiq and Santos [81] proposed a BERT-based classifier, finetuned using the issue
title and body. Preprocessing included removal of repeating white space characters
and replacement of tabs and line breaks with spaces [69].

■ Trautsch and Herbold [82] fine-tuned seBERT [83], a model for the software engi-
neering domain that is pretrained using posts from Stack Overflow and issues/commit
messages from the repositories of open source projects. The model was fine-tuned
using the issue text (title and body) after preprocessing (e.g., replacement of line
breaks with spaces and removal of repeating white space characters) [69].

In Table 4 we report the NLBSE’22 Tool Competition Ranking, from [69].

Based on the classification results, the final rank was the following:

■ Izadi [77] took the first place in the competition with their CatIss approach (0.872
micro avg. F1-score) [69].

■ Bharadwaj and Kadam [78] occupied the second place with their RoBERTa and
CodeBERT[79] approach (0.865 and 0.862 micro avg. F1-score, respectively) [69].

■ The remaining teams (Colavito et al. [84], Siddiq and Santos [81], and Trautsch and
Herbold [82]) finished in the third place of the competition as their best classifiers
achieved virtually the same performance (0.855 - 0.859 micro avg. F1-score) [69].

The main difference from our approach and the top performing ones are the following:

■ Both Izadi [77] and Bharadwaj & Kadam [78] use a bigger input size for their

30

Table 4. Issue classification results for bugs, enhancements and questions. The models are
ranked by Avg., the micro average precision/recall/F1-score over the three issue types.

Classification Model Metric Bug Enh. Que. Avg.

CatIss (RoBERTa)
by Izadi[77]

Precision 0.894 0.874 0.720
0.872Recall 0.897 0.885 0.664

F1-score 0.896 0.879 0.691

RoBERTa
by Bharadwaj & Kadam[78]

Precision 0.872 0.879 0.714
0.865Recall 0.911 0.877 0.539

F1-score 0.891 0.878 0.614

CodeBERT
by Bharadwaj & Kadam[78]

Precision 0.883 0.866 0.693
0.862Recall 0.894 0.891 0.551

F1-score 0.888 0.878 0.614

RoBERTa
by Colavito et al.[84]

Precision 0.875 0.871 0.767
0.859Recall 0.898 0.874 0.559

F1-score 0.886 0.872 0.612

BERT
by Siddiq & Santos[81]

Precision 0.883 0.859 0.678
0.858Recall 0.888 0.888 0.546

F1-score 0.885 0.873 0.605

seBERT (BERT)
by Trautsch & Herbold[82]

Precision 0.866 0.864 0.731
0.857Recall 0.906 0.877 0.487

F1-score 0.886 0.871 0.584

XLNet
by Bharadwaj & Kadam[78]

Precision 0.879 0.853 0.706
0.856Recall 0.885 0.890 0.534

F1-score 0.882 0.871 0.608

BERT
by Bharadwaj & Kadam[78]

Precision 0.875 0.866 0.660
0.855Recall 0.892 0.871 0.570

F1-score 0.883 0.868 0.611

MLP
by Colavito et al.[84]

Precision 0.893 0.879 0.472
0.829Recall 0.834 0.839 0.753

F1-score 0.863 0.859 0.581

Logistic Regression
by Izadi[77]

Precision 0.841 0.822 0.655
0.822Recall 0.867 0.850 0.432

F1-score 0.854 0.835 0.521

Baseline (fastText)
by Kallis et al.[6, 7]

Precision 0.811 0.844 0.669
0.818Recall 0.904 0.815 0.336

F1-score 0.855 0.830 0.447

31

models, the first 200, the second 512. This slows down by a lot the training phase,
and doesn’t lead to significative improvements.

■ Izadi [77] uses as part of the input of their model two more features:
– repository name,
– issue creation timestamp.

We believe that those two features can be a source of bias and label leakage. The
model learns the names of the repository in the training set and can potentially map
timestamps to labels. Still this suggests that different project may have different
labelling rationale and then, knowing the name, we can make a distinction between
projects and behave differently in the classification.

■ Izadi [77] removes duplicates from the training set.

In general, the performances among the participants of the tool competition are very similar,
and every team used a pre-trained language model. Also, there are three entries using
RoBERTa, which occupies 3/4 of the top four ranking models. All the BERT base models
overcome the fastText baseline [6, 7] by 0.04− 0.06 in the overall F1 micro. Anyways,
fastText is way faster, both in training and inference time than a BERT model [85]. So,
a non-trivial question is: Is it worth that low increase in performance? A BERT model
requires more memory, is slower and heavier than fastText. So, the fastText model is
probably easier to deploy and can be used with less resources than a BERT model.

32

6. Discussion

6.1 Error Analysis

The goal of this analysis is to understand which are the main causes of the errors in the
classification of test set’s issues. We formulate some hypothesis:

■ The model might be not appropriate:
– Need to find better hyperparameters for the selected model
– Need to explore other models which might be more useful for the task

■ The available data might not be enough for classifying correctly the issues:
– Need to integrate more features which might help in the prediction
– Select an appropriate way to embed all the knowledge together, textual or not
– Need more examples of issues labeled as question in order to learn a better

model with a more balanced dataset
■ The labels might be wrong:

– We cannot trust a random user labelling an issue
– We cannot trust the labelling criteria of small projects, that can be personal

projects or not projects at all [86].
■ Every project has a labelling criteria and they might not agree.

From the comparison of the tools submitted for the challenge, BERT models are the top
performing models. In fact, all the models achieve very similar performances. While tools
using other standard machine learning approaches are down in the ranking. So, actually
BERT models are the best choice for facing the task.

In Table 5, we report the confusion matrix for our RoBERTa classifier. We observe that
the misclassification of questions as bugs is main cause of error (27% of test documents),
immediately followed by misclassification of questions as enhancements (17% of cases).
As the third most frequent cause of error, we observe misclassification of enhancements

as bugs (10%). We conjecture this can be explained by the unbalanced distribution of
labels in the dataset (see Table 1). The classifier hasn’t seen a lot of question example,
and because of this, can have difficulties in model that kind of issues. A more balanced
dataset might help in having more acceptable performances for the question class. To get

33

Table 5. Confusion matrix on the test set for Classifier 1

Classifier prediction
Gold label bug enhancement question
bug 36,210 (90%) 3,106 (8%) 972 (2%)
enhancement 3,261 (10%) 29,031 (87%) 911 (3%)
question 1,914 (27%) 1,184 (17%) 3,929 (56%)

a deeper insight on the difficulties inherent in issue classification, we perform an error
analysis by manually inspecting the classification output of the RoBERTa fine-tuned model.
Specifically, we examined 370+ cases, that represents a statistically significant sample
(with 95% confidence level) of cases for which the classifier yielded a wrong prediction.
We observed that some issues labeled as question actually report inconsistent behavior or
missing code, thus resembling the structure and content of bug reports (e.g., "Fragrance

not showing in Homekit - I cannot see the installed fragrance in HomeKit, however it is

available in Homebridge."). In this cases, it is impossible to distinguish among bugs and
question. A bug is a bug if the behaviour of the code is incorrect, and the error does not
depend on the user. On the contrary, a question about an error, stands as a question if the
behaviour of the code is correct, and the error is caused by the user. Questions often also
contain an error message, as also common for bugs. These cases are labeled as question in
line with the information seeking goal of the author. However, a text-based classifier might
not be necessarily able to disambiguate between bugs and questions in similar cases. A
similar situation is observed for questions or bugs that also include suggestions for fixing
the reported problem, which is probably the cause for misclassification as enhancement.
Finally, the dataset contains issues collected from different projects, thus reflecting possible
inconsistencies in the labeling rationale, as well as a few cases not in English. Since our
model is pre-trained on an English corpus, it cannot understand other languages and might
make errors classifying issues written in languages which he has never seen on the training
corpus.

6.1.1 Error Examples

We report here some significative examples of issues which are hard to classify correctly.
The issues are taken from the ones misclassified by our model.

In Figures 14 and 15 there is an issue labeled as question. But the content of the issue is
a bug report. At write time, the creator of the issue does not assign any issue label. The
issue contains a bug report and some instructions on how to reproduce the error. Then, in

34

Figure15 a repository member starts handling the issue, and after a day, answers to the
issue saying: "This is the expected behaviour of the code". Meaning that the code, used
that way, should throw an error. After the analysis, the repository member labels the issue
as a question.

Figure 14. First case: an issue labeled as question, which actually contains a bug report

But what would have happened if that error was not the expected behaviour of the code?
Probably the issue text would have been the same, but the member of the repository,
knowing how the code should behave in certain situations, would have labeled it as a bug.
So, what’s the difference among a question and a bug? Is it the behaviour of the code? If
it is, then we cannot expect to be able to distinguish among bugs and questions without
knowing the expected behaviour of the code. In the issue text there is not such information.

In Figure 16 there is an issue with two labels. At write time the issue creator, which is also
a contributor for the repository, labels the issue as a question. In fact, the text is actually a
question on repository usage. The issue creator wants to know how to do a specific thing
with the repository. Then, a repository collaborator handles the issue, writing: "This isn’t
possible at the moment" and shows interest in integrating that feature in the repository.
After that, he labels the issue as an enhancement. And, in the competition dataset, this
issue is labeled as an enhancement.

35

Figure 15. First case: answer to the issue by a member of the repository

Figure 16. Second case: an issue labeled as question, which is then labeled as enhancement
by a repository collaborator

36

This shows how different teams may use labels differently: the issue is objectively a
question, but the collaborator decided to use that question as a reminder or a starting point
to enhance the repository including the feature described by the question. And so, he
labeled the issue as enhancement. But from the text, how are we supposed to understand
that that feature is not present in the code and the collaborator will be interested in adding
it? We cannot, and we believe that classifying this issue as a question is correct. From this
example we also understand that we cannot trust random users in random repositories to
train an issue classifier.

6.2 Handling noise

Inspecting the dataset, we found out that the data was really noisy. We saw in Section 6,
specifically in Figure 16, how issue labels can be interpretated differently. As we can see
from Table 6, in the dataset there are lots of projects with only one issue. This could mean
that:

■ the project is inactive, so there are few issues,
■ the project is personal, so there is a single developer which is using the issue tracker

as a reminder for future development of his project.

As suggested in [86], the majority of the projects are personal and inactive. So, mining
GitHub issues without some filters to avoid those kind of projects, is not a good choice. If
you have a project and you use it alone, there’s no need to agree on the issue label with
others, since the only one who takes care of the project is the owner. If issues are not used
for a team to cooperate, probably there isn’t a well established rationale on how to label
issues. So we decided to filter out projects with only one issue in the dataset.

Table 6. Distribution of repositories with only one issue and with more issues in the dataset

issues per repo no. repos
= 1 52.348
> 1 75.247
total 127.595

Many studies consider the number of stars of a project to be a proxy of their quality [87,
88]. As we show in Table 7, there are a lot of low quality repositories in the dataset. We
believe that using higher quality projects as training set for a model, which are repositories
making active use of the issue tracking system to work on the project, we can obtain better
quality predictions.

37

Both of our filters are aimed to exclude small and low quality projects, which don’t make
use of issue tracker often and probably when they do, they do not use it in the right way.
It’s not important to be able to predict the label of an issue which comes from a small
repository or from personal project: a small repository will not have a huge number of
issues to handle. Prioritizing issues is something useful for bigger teams, since they receive
high numbers of issues. So, we decided to keep only projects with at least two stars.

Table 7. Distribution of repositories with at most two stars or more than two stars in the
dataset

stars no. repos
≤ 1 46.470
> 1 81.125
total 127.595

To this aim, we filtered out issues from both the training and the testing set, and than
retrained a model using only the issues from projects with at least two stars, which had
at least two issues in the dataset. We also removed duplicates and issues coming from
projects which had been deleted from GitHub. After applying this filtering we obtain the
dataset distribution shown in Table 8. As a result, we filtered out more than 200, 000

Table 8. Filtered dataset with label distribution.

Train set Test set
bug 290,801 (55%) 33,275 (54%)
enhancement 188,643 (35%) 21,584 (35%)
question 53,361 (10%) 6,454 (11%)
total 532,805 61,313

We train the issue classifier with the filtered dataset and obtain the performances shown in
Table 9. Although the test set is different, there are not relevant changes in the micro F1,
which is substantially the same. The F1 for the question and the bug class are higher while
for the enhancement class is lower. Still the changes are very small and so we cannot assert
that our filtering was useful in some way. The recall for the question class remains critical,
which can be justified once again by the lower number of examples representing that class.

We then start conjecturing that maybe, in older repositories, it is more probable that a
labeling rationale has been established, while for newer repositories we could have more
noise, since the project is young and needs still time to draw up some guidelines for
labeling. So, we set up another filter:

■ remove projects with age less than one year

38

Table 9. Performance on the filtered dataset.

Class Prec Rec F1
bug .8771 .9095 .8930
enhanc. .8562 .8474 .8517
question .6808 .5744 .6231
micro avg .8524 .8524 .8524
macro avg .8074 .7771 .7893

■ split the remaining projects in two ranges, [1, 4] years and]4,+∞)

This kind of split is inspired by [89]. This filter is applied after the ones described above.
We show the distribution of the two splits in Table 10. As we can see, in the dataset there
are a lot more young projects than the old ones.

Table 10. Dataset filtered and split by year with label distribution.

1-4 year 4+ year split
Class Train set Test set Train set Test set
bug 197,003 (53%) 22,548 (53%) 93,798 (58%) 10,727 (58%)
enhancement 145,658 (39%) 16,609 (39%) 42,985 (27%) 4,975 (27%)
question 29,957 (8%) 3,714 (9%) 23,404 (15%) 2,740 (15%)
total 372,618 42,871 160,187 18,442

We then retrain the RoBERTa model for both the splits and obtain the performance shown
in Table 11.

Table 11. Performance on the filtered dataset, on the years split.

1-4 year 4+ year split
Class Prec Rec F1 Supp Prec Rec F1 Supp
bug .8831 .9080 .8953 22,548 .8694 .8970 .8830 10,727
enhanc. .8646 .8677 .8661 16,609 .8082 .7735 .7905 4,975
question .6664 .5417 .5977 3,714 .6748 .6438 .6589 2,740
micro avg .8606 .8606 .8606 42,871 .8260 .8260 .8260 18,442
macro avg .8047 .7725 .7864 42,871 .7842 .7714 .7775 18,442

As we can see, the performance on the 1−4 year split are quite similar to the performances
obtained on the original test set. For the 4+ year split, instead, we have a significant drop
in the micro F1, while the classifier has a higher recall and F1 for the minority class. This
drop can be explained by the low number of examples present in the second split. While
the improvement for the prediction of the question class, is justified by the fact that in the
4+ year split we have a bigger proportion of the question class in the training set. We can

39

overall say that our filter weren’t useful to improve the performances of our issue-classifier.
We used filters which are simple, intuitive and commonly accepted. Anyways these
procedures haven’t led us to significative improvements in the issue classification task.
This probably because of the consistent drop in the number of data remaining, especially
after the two splits, and also the imbalance of the labels in the dataset.

40

7. Conclusions

We described our participation to the issue classification competition at the NLBSE’22
Workshop and some follow-up studies. We proposed a supervised approach for the
automatic classification of GitHub issues as either bug, enhancement, or question. The two
supervised approaches we proposed leverage transformer-based contextual embeddings
and both outperform the baseline set by the competition organizers. As a result of our study
and also of the tool competition, we can say that BERT and his variants are actually state-
of-the-art for the issue report classification task. The performances in the Tool Competition
were all quite similar, and the changes in the overall micro F1 were lower than 0.06. We did
not conduct hyperparameter tuning to find the best parameters for the model when facing
this task. This because fine-tuning BERT model is computational intensive, and requires a
GPU. It may take a very long time to perform an extensive hyperparameter tuning without
having adequate resources. We believe that tuning hyperparameters could increase the
performances of our model. Although Ticket Tagger is the last model in the performances
ranking, it can be still useful because of his speed and lightness. Actually it probably is
the model which is easier to deploy in terms of potential spent resources and availability.
We discovered a potential vulnerability of the dataset, which is big amount of noise. The
dataset unbalance and the noise are probably the reasons why we couldn’t achieve good
performance in recognizing issues labeled as question. We tried with different attempt to
filter out noise from the dataset, such as small and young repositories, which cannot be
trusted blindly. Still we haven’t obtained encouraging results in this direction.

7.1 Future Works

As future work, we plan to further investigate this task and this dataset:

■ hyperparameter tuning, which is necessary to find the best set of hyperparameter to
maximize the performances observed on the test set. Results in this sense may guide
future research in this area and give more validity to our study.

■ compare the performance of BERT-based models with traditional machine learn-
ing (such as SVM, Naive Bayes, etc.). This also enables a comparsion based on
the inference time, which we expect to be lower on traditional machine learning
approaches.

■ experiment with cross/within project settings, to understand if it is useful to fine-

41

tuned a model on the specific project or it is better to have a training set composed
of more, reliable projects.

■ try to approach the same task with a different dataset, such as the JIRA dataset
presented in [33]. This dataset is composed of big projects which could be considered
reliable, but still have an unbalanced distribution. Experimenting on other datasets
is important to understand whether our findings still hold with different dataset, or
having a different dataset can lead to a better/worse model. It is also useful for
understanding which dataset one should use when building a model which can be
deployed and used in real scenarios.

42

List of Figures

1 Bugzilla, list of bugs in the KDE project, from [19] 5
2 An issue tracked by JIRA, from [25] . 7
3 An issue tracked by GitLab, from [34] 8
4 Illustration of Tranformers architecture, from [56] 11
5 Illustration of the dependencies encoded by the self-attention layers . As

we encode the word "it", one attention head is focusing most on "the
animal", while another is focusing on "tired" – in a sense, the model’s
representation of the word "it" bakes in some of the representation of both
"animal" and "tired", from [57] . 13

6 Different variants of BERT, from [59]. 14
7 BERT creating word embeddings, from [59]. 14

8 Example of GitHub issue, from [64]. 16
9 Custom labels in GitHub Issues, from [67]. 17
10 Tool Competition page of the NLBSE’22 workshop 18

11 The two classifiers implemented for issue labeling. 24
12 Illustration of the process adopted to select the best BERT model 25
13 Concatenation of the BERT embedding with the issue author association

one-hot encoding vector . 27

14 First case: an issue labeled as question, which actually contains a bug report 35
15 First case: answer to the issue by a member of the repository 36
16 Second case: an issue labeled as question, which is then labeled as en-

hancement by a repository collaborator 36

43

List of Tables

1 Dataset with label distribution. 21

2 Model selection: the best performance achieved on the validation set for
all fine-tuned models. 26

3 Performance of the system on the test. 29
4 Issue classification results for bugs, enhancements and questions. The

models are ranked by Avg., the micro average precision/recall/F1-score
over the three issue types. 31

5 Confusion matrix on the test set for Classifier 1 34
6 Distribution of repositories with only one issue and with more issues in

the dataset . 37
7 Distribution of repositories with at most two stars or more than two stars

in the dataset . 38
8 Filtered dataset with label distribution. 38
9 Performance on the filtered dataset. 39
10 Dataset filtered and split by year with label distribution. 39
11 Performance on the filtered dataset, on the years split. 39

44

References

[1] Giuliano Antoniol et al. “Is It a Bug or an Enhancement? A Text-Based Approach to
Classify Change Requests”. In: Proceedings of the 2008 Conference of the Center for

Advanced Studies on Collaborative Research: Meeting of Minds. CASCON ’08. On-
tario, Canada: Association for Computing Machinery, 2008. ISBN: 9781450378826.
DOI: 10.1145/1463788.1463819. URL: https://doi.org/10.1145/
1463788.1463819.

[2] Kim Herzig, Sascha Just, and Andreas Zeller. “It’s not a bug, it’s a feature: How
misclassification impacts bug prediction”. In: 2013 35th International Conference

on Software Engineering (ICSE). 2013, pp. 392–401. DOI: 10.1109/ICSE.
2013.6606585.

[3] Nitish Pandey et al. “Automated classification of software issue reports using
machine learning techniques: an empirical study”. In: Innovations in Systems and

Software Engineering 13 (Dec. 2017). DOI: 10.1007/s11334-017-0294-1.

[4] Jun Wang, Xiaofang Zhang, and Lin Chen. “How well do pre-trained contextual lan-
guage representations recommend labels for GitHub issues?” In: Knowledge-Based

Systems 232 (2021), p. 107476. ISSN: 0950-7051. DOI: https://doi.org/10.
1016/j.knosys.2021.107476. URL: https://www.sciencedirect.
com/science/article/pii/S0950705121007383.

[5] M. Izadi, K. Akbari, and A. Heydarnoori. “Predicting the objective and priority of
issue reports in software repositories.” In: Empir Software Eng 27 (2022). ISSN:
0950-7051. DOI: 10.1007/s10664-021-10085-3. URL: https://link.
springer.com/article/10.1007/s10664-021-10085-3.

[6] Rafael Kallis et al. “Predicting issue types on GitHub”. In: Science of Com-

puter Programming 205 (2021), p. 102598. ISSN: 0167-6423. DOI: https :
//doi.org/10.1016/j.scico.2020.102598. URL: https://www.
sciencedirect.com/science/article/pii/S0167642320302069.

[7] Rafael Kallis et al. “Ticket Tagger: Machine Learning Driven Issue Classification”.
In: 2019 IEEE International Conference on Software Maintenance and Evolution

(ICSME). 2019, pp. 406–409. DOI: 10.1109/ICSME.2019.00070.

45

https://doi.org/10.1145/1463788.1463819
https://doi.org/10.1145/1463788.1463819
https://doi.org/10.1145/1463788.1463819
https://doi.org/10.1109/ICSE.2013.6606585
https://doi.org/10.1109/ICSE.2013.6606585
https://doi.org/10.1007/s11334-017-0294-1
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107476
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107476
https://www.sciencedirect.com/science/article/pii/S0950705121007383
https://www.sciencedirect.com/science/article/pii/S0950705121007383
https://doi.org/10.1007/s10664-021-10085-3
https://link.springer.com/article/10.1007/s10664-021-10085-3
https://link.springer.com/article/10.1007/s10664-021-10085-3
https://doi.org/https://doi.org/10.1016/j.scico.2020.102598
https://doi.org/https://doi.org/10.1016/j.scico.2020.102598
https://www.sciencedirect.com/science/article/pii/S0167642320302069
https://www.sciencedirect.com/science/article/pii/S0167642320302069
https://doi.org/10.1109/ICSME.2019.00070

[8] Armand Joulin et al. “Bag of Tricks for Efficient Text Classification”. In: Proc.

of the 15th Conf. of the European Chapter of the Association for Computational

Linguistics. Valencia, Spain: ACL, Apr. 2017, pp. 427–431. URL: https://
aclanthology.org/E17-2068.

[9] Rafael Kallis et al. “NLBSE’22 Tool Competition”. In: Proceedings of The 1st Inter-

national Workshop on Natural Language-based Software Engineering (NLBSE’22).
2022.

[10] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. 2019. arXiv: 1810.04805 [cs.CL].

[11] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach.
2019. arXiv: 1907.11692 [cs.CL].

[12] Zhenzhong Lan et al. ALBERT: A Lite BERT for Self-supervised Learning of Lan-

guage Representations. 2020. arXiv: 1909.11942 [cs.CL].

[13] Colavito Giuseppe, Lanubile Filippo, and Novielli Nicole. Issue-Report-Classification-

Using-RoBERTa. Version 1.0.0. Mar. 2022. URL: https://github.com/
collab-uniba/Issue-Report-Classification-Using-RoBERTa.

[14] D.E. Perry, N.A. Staudenmayer, and L.G. Votta. “People, organizations, and process
improvement”. In: IEEE Software 11.4 (1994), pp. 36–45. DOI: 10.1109/52.
300082.

[15] Yunwen Ye. “Supporting software development as knowledge-intensive and collabo-
rative activity”. In: Proceedings of The IEEE - PIEEE (Jan. 2006). DOI: 10.1145/
1137661.1137666.

[16] Thomas Zimmermann et al. “What Makes a Good Bug Report?” In: IEEE Trans-

actions on Software Engineering 36.5 (2010), pp. 618–643. DOI: 10.1109/TSE.
2010.63.

[17] Dane Bertram et al. “Communication, collaboration, and bugs: The social nature
of issue tracking in small, collocated teams”. In: Jan. 2010, pp. 291–300. DOI:
10.1145/1718918.1718972.

[18] Walid Maalej Clara Marie Lüders Abir Bouraffa. “Beyond Duplicates: Towards
Understanding and Predicting Link Types in Issue Tracking Systems”. In: (July
2022).

[19] Wikipedia. Bugzilla. URL: https : / / it . wikipedia . org / wiki /
Bugzilla.

[20] J. Janák. “Issue tracking systems”. In: Brno, spring (2009), p. 17.

46

https://aclanthology.org/E17-2068
https://aclanthology.org/E17-2068
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1909.11942
https://github.com/collab-uniba/Issue-Report-Classification-Using-RoBERTa
https://github.com/collab-uniba/Issue-Report-Classification-Using-RoBERTa
https://doi.org/10.1109/52.300082
https://doi.org/10.1109/52.300082
https://doi.org/10.1145/1137661.1137666
https://doi.org/10.1145/1137661.1137666
https://doi.org/10.1109/TSE.2010.63
https://doi.org/10.1109/TSE.2010.63
https://doi.org/10.1145/1718918.1718972
https://it.wikipedia.org/wiki/Bugzilla
https://it.wikipedia.org/wiki/Bugzilla

[21] Robert Sandusky and Les Gasser. “Negotiation and the coordination of information
and activity in distributed software problem management”. In: Jan. 2005, pp. 187–
196. DOI: 10.1145/1099203.1099238.

[22] Christine Halverson et al. “Designing task visualizations to support the coordination
of work in software development”. In: Jan. 2006, pp. 39–48. DOI: 10.1145/
1180875.1180883.

[23] John Anvik, Lyndon Hiew, and Gail Murphy. “Who should fix this bug?” In:
vol. 2006. May 2006, pp. 361–370. DOI: 10.1145/1134336.

[24] N.E. Fenton and M. Neil. “A critique of software defect prediction models”. In:
IEEE Transactions on Software Engineering 25.5 (1999), pp. 675–689. DOI: 10.
1109/32.815326.

[25] Atlassian. What is an issue in JIRA. URL: https://support.atlassian.
com/jira-software-cloud/docs/what-is-an-issue/.

[26] Neil A. Ernst and Gail C. Murphy. “Case studies in just-in-time requirements
analysis”. In: 2012 Second IEEE International Workshop on Empirical Require-

ments Engineering (EmpiRE). 2012, pp. 25–32. DOI: 10.1109/EmpiRE.2012.
6347678.

[27] Ahmed Lamkanfi et al. “Comparing Mining Algorithms for Predicting the Severity
of a Reported Bug”. In: Proceedings of the 2011 15th European Conference on Soft-

ware Maintenance and Reengineering. CSMR ’11. USA: IEEE Computer Society,
2011, pp. 249–258. ISBN: 9780769543437. DOI: 10.1109/CSMR.2011.31.
URL: https://doi.org/10.1109/CSMR.2011.31.

[28] Ahmed Lamkanfi et al. “Predicting the severity of a reported bug”. In: 2010 7th

IEEE Working Conference on Mining Software Repositories (MSR 2010). 2010,
pp. 1–10. DOI: 10.1109/MSR.2010.5463284.

[29] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. “Improving Bug Triage
with Bug Tossing Graphs”. In: Proceedings of the 7th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT Symposium on The

Foundations of Software Engineering. ESEC/FSE ’09. Amsterdam, The Netherlands:
Association for Computing Machinery, 2009, pp. 111–120. ISBN: 9781605580012.
DOI: 10.1145/1595696.1595715. URL: https://doi.org/10.1145/
1595696.1595715.

47

https://doi.org/10.1145/1099203.1099238
https://doi.org/10.1145/1180875.1180883
https://doi.org/10.1145/1180875.1180883
https://doi.org/10.1145/1134336
https://doi.org/10.1109/32.815326
https://doi.org/10.1109/32.815326
https://support.atlassian.com/jira-software-cloud/docs/what-is-an-issue/
https://support.atlassian.com/jira-software-cloud/docs/what-is-an-issue/
https://doi.org/10.1109/EmpiRE.2012.6347678
https://doi.org/10.1109/EmpiRE.2012.6347678
https://doi.org/10.1109/CSMR.2011.31
https://doi.org/10.1109/CSMR.2011.31
https://doi.org/10.1109/MSR.2010.5463284
https://doi.org/10.1145/1595696.1595715
https://doi.org/10.1145/1595696.1595715
https://doi.org/10.1145/1595696.1595715

[30] Jayati Deshmukh et al. “Towards Accurate Duplicate Bug Retrieval Using Deep
Learning Techniques”. In: 2017 IEEE International Conference on Software Main-

tenance and Evolution (ICSME). 2017, pp. 115–124. DOI: 10.1109/ICSME.
2017.69.

[31] Jianjun He et al. “Duplicate Bug Report Detection Using Dual-Channel Convo-
lutional Neural Networks”. In: Proceedings of the 28th International Conference

on Program Comprehension. New York, NY, USA: Association for Computing
Machinery, 2020, pp. 117–127. ISBN: 9781450379588. URL: https://doi.
org/10.1145/3387904.3389263.

[32] Xiaoyin Wang et al. “An Approach to Detecting Duplicate Bug Reports Using
Natural Language and Execution Information”. In: Proceedings of the 30th In-

ternational Conference on Software Engineering. ICSE ’08. Leipzig, Germany:
Association for Computing Machinery, 2008, pp. 461–470. ISBN: 9781605580791.
DOI: 10.1145/1368088.1368151. URL: https://doi.org/10.1145/
1368088.1368151.

[33] Lloyd Montgomery, Clara Lüders, and Walid Maalej. “Jira: An Alternative Issue
Tracking Dataset”. In: (Jan. 2022).

[34] GitLab. 101 - No Tissues with Issues. URL: https : / / about . gitlab .
com / handbook / marketing / strategic - marketing / getting -

started/101/.

[35] Y. Yang and T. Joachims. “Text categorization”. In: Scholarpedia 3.5 (2008). revi-
sion #137225, p. 4242. DOI: 10.4249/scholarpedia.4242.

[36] Fabrizio Sebastiani. “Machine Learning in Automated Text Categorization”. In:
ACM Comput. Surv. 34.1 (Mar. 2002), pp. 1–47. ISSN: 0360-0300. DOI: 10.1145/
505282.505283. URL: https://doi.org/10.1145/505282.505283.

[37] Yin Zhang, Rong Jin, and Zhi-Hua Zhou. “Understanding bag-of-words model: a sta-
tistical framework”. In: International Journal of Machine Learning and Cybernetics

1 (2010), pp. 43–52.

[38] Santiago González-Carvajal and Eduardo C. Garrido-Merchán. Comparing BERT

against traditional machine learning text classification. 2020. DOI: 10.48550/
ARXIV.2005.13012. URL: https://arxiv.org/abs/2005.13012.

[39] Karen Spärck Jones. “A statistical interpretation of term specificity and its applica-
tion in retrieval”. In: J. Documentation 60 (2004), pp. 493–502.

48

https://doi.org/10.1109/ICSME.2017.69
https://doi.org/10.1109/ICSME.2017.69
https://doi.org/10.1145/3387904.3389263
https://doi.org/10.1145/3387904.3389263
https://doi.org/10.1145/1368088.1368151
https://doi.org/10.1145/1368088.1368151
https://doi.org/10.1145/1368088.1368151
https://about.gitlab.com/handbook/marketing/strategic-marketing/getting-started/101/
https://about.gitlab.com/handbook/marketing/strategic-marketing/getting-started/101/
https://about.gitlab.com/handbook/marketing/strategic-marketing/getting-started/101/
https://doi.org/10.4249/scholarpedia.4242
https://doi.org/10.1145/505282.505283
https://doi.org/10.1145/505282.505283
https://doi.org/10.1145/505282.505283
https://doi.org/10.48550/ARXIV.2005.13012
https://doi.org/10.48550/ARXIV.2005.13012
https://arxiv.org/abs/2005.13012

[40] Thomas K Landauer, Peter W. Foltz, and Darrell Laham. “An introduction to
latent semantic analysis”. In: Discourse Processes 25.2-3 (1998), pp. 259–284.
DOI: 10.1080/01638539809545028. eprint: https://doi.org/10.
1080/01638539809545028. URL: https://doi.org/10.1080/
01638539809545028.

[41] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level Convolutional Net-

works for Text Classification. 2015. DOI: 10.48550/ARXIV.1509.01626.
URL: https://arxiv.org/abs/1509.01626.

[42] Frederico Souza and João Filho. BERT for Sentiment Analysis: Pre-trained and

Fine-Tuned Alternatives. 2022. DOI: 10.48550/ARXIV.2201.03382. URL:
https://arxiv.org/abs/2201.03382.

[43] Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector Space.
2013. DOI: 10.48550/ARXIV.1301.3781. URL: https://arxiv.org/
abs/1301.3781.

[44] Shervin Minaee et al. Deep Learning Based Text Classification: A Comprehensive

Review. 2020. DOI: 10.48550/ARXIV.2004.03705. URL: https://
arxiv.org/abs/2004.03705.

[45] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A Convolutional Neural

Network for Modelling Sentences. 2014. DOI: 10.48550/ARXIV.1404.2188.
URL: https://arxiv.org/abs/1404.2188.

[46] Alexis Conneau et al. Very Deep Convolutional Networks for Text Classification.
2016. DOI: 10.48550/ARXIV.1606.01781. URL: https://arxiv.org/
abs/1606.01781.

[47] Rie Johnson and Tong Zhang. “Deep Pyramid Convolutional Neural Networks for
Text Categorization”. In: Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada: Asso-
ciation for Computational Linguistics, July 2017, pp. 562–570. DOI: 10.18653/
v1/P17-1052. URL: https://aclanthology.org/P17-1052.

[48] Yizhe Zhang et al. Deconvolutional Paragraph Representation Learning. 2017. DOI:
10.48550/ARXIV.1708.04729. URL: https://arxiv.org/abs/
1708.04729.

[49] Dinghan Shen et al. “Deconvolutional Latent-Variable Model for Text Sequence
Matching”. In: Proceedings of the AAAI Conference on Artificial Intelligence 32.1
(Apr. 2018). DOI: 10.1609/aaai.v32i1.11991. URL: https://ojs.
aaai.org/index.php/AAAI/article/view/11991.

49

https://doi.org/10.1080/01638539809545028
https://doi.org/10.1080/01638539809545028
https://doi.org/10.1080/01638539809545028
https://doi.org/10.1080/01638539809545028
https://doi.org/10.1080/01638539809545028
https://doi.org/10.48550/ARXIV.1509.01626
https://arxiv.org/abs/1509.01626
https://doi.org/10.48550/ARXIV.2201.03382
https://arxiv.org/abs/2201.03382
https://doi.org/10.48550/ARXIV.1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.48550/ARXIV.2004.03705
https://arxiv.org/abs/2004.03705
https://arxiv.org/abs/2004.03705
https://doi.org/10.48550/ARXIV.1404.2188
https://arxiv.org/abs/1404.2188
https://doi.org/10.48550/ARXIV.1606.01781
https://arxiv.org/abs/1606.01781
https://arxiv.org/abs/1606.01781
https://doi.org/10.18653/v1/P17-1052
https://doi.org/10.18653/v1/P17-1052
https://aclanthology.org/P17-1052
https://doi.org/10.48550/ARXIV.1708.04729
https://arxiv.org/abs/1708.04729
https://arxiv.org/abs/1708.04729
https://doi.org/10.1609/aaai.v32i1.11991
https://ojs.aaai.org/index.php/AAAI/article/view/11991
https://ojs.aaai.org/index.php/AAAI/article/view/11991

[50] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Recurrent Neural Network for Text

Classification with Multi-Task Learning. 2016. DOI: 10.48550/ARXIV.1605.
05101. URL: https://arxiv.org/abs/1605.05101.

[51] Dani Yogatama et al. Generative and Discriminative Text Classification with Re-

current Neural Networks. 2017. DOI: 10.48550/ARXIV.1703.01898. URL:
https://arxiv.org/abs/1703.01898.

[52] Minjoon Seo et al. Neural Speed Reading via Skim-RNN. 2017. DOI: 10.48550/
ARXIV.1711.02085. URL: https://arxiv.org/abs/1711.02085.

[53] Zichao Yang et al. “Hierarchical Attention Networks for Document Classification”.
In: Proceedings of the 2016 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies. San
Diego, California: Association for Computational Linguistics, June 2016, pp. 1480–
1489. DOI: 10.18653/v1/N16-1174. URL: https://aclanthology.
org/N16-1174.

[54] Zhouhan Lin et al. A Structured Self-attentive Sentence Embedding. 2017. DOI:
10.48550/ARXIV.1703.03130. URL: https://arxiv.org/abs/
1703.03130.

[55] Chi Sun et al. How to Fine-Tune BERT for Text Classification? 2019. DOI: 10.
48550/ARXIV.1905.05583. URL: https://arxiv.org/abs/1905.
05583.

[56] Ashish Vaswani et al. Attention Is All You Need. 2017. arXiv: 1706.03762
[cs.CL].

[57] Jay Alammar. The Illustrated Transformer. URL: https : / / jalammar .
github.io/illustrated-transformer/.

[58] University of Harvard. The Annotated Transformer. URL: http://nlp.seas.
harvard.edu/2018/04/03/attention.html.

[59] Jay Alammar. The Illustrated BERT, ELMo, and co. (How NLP Cracked Trans-

fer Learning). URL: https://jalammar.github.io/illustrated-
bert/.

[60] Matthew E. Peters et al. Deep contextualized word representations. 2018. arXiv:
1802.05365 [cs.CL].

[61] Tegawendé F. Bissyandé et al. “Got issues? Who cares about it? A large scale
investigation of issue trackers from GitHub”. In: 2013 IEEE 24th International

Symposium on Software Reliability Engineering (ISSRE). 2013, pp. 188–197. DOI:
10.1109/ISSRE.2013.6698918.

50

https://doi.org/10.48550/ARXIV.1605.05101
https://doi.org/10.48550/ARXIV.1605.05101
https://arxiv.org/abs/1605.05101
https://doi.org/10.48550/ARXIV.1703.01898
https://arxiv.org/abs/1703.01898
https://doi.org/10.48550/ARXIV.1711.02085
https://doi.org/10.48550/ARXIV.1711.02085
https://arxiv.org/abs/1711.02085
https://doi.org/10.18653/v1/N16-1174
https://aclanthology.org/N16-1174
https://aclanthology.org/N16-1174
https://doi.org/10.48550/ARXIV.1703.03130
https://arxiv.org/abs/1703.03130
https://arxiv.org/abs/1703.03130
https://doi.org/10.48550/ARXIV.1905.05583
https://doi.org/10.48550/ARXIV.1905.05583
https://arxiv.org/abs/1905.05583
https://arxiv.org/abs/1905.05583
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://jalammar.github.io/illustrated-bert/
https://jalammar.github.io/illustrated-bert/
https://arxiv.org/abs/1802.05365
https://doi.org/10.1109/ISSRE.2013.6698918

[62] Sebastiano Panichella et al. “How Developers’ Collaborations Identified from
Different Sources Tell Us about Code Changes”. In: 2014 IEEE International

Conference on Software Maintenance and Evolution. 2014, pp. 251–260. DOI:
10.1109/ICSME.2014.47.

[63] Qiang Fan et al. “Where Is the Road for Issue Reports Classification Based on Text
Mining?” In: 2017 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM). 2017, pp. 121–130. DOI: 10.1109/ESEM.
2017.19.

[64] GeoNode. Work With GitHub Issues and Pull Requests. URL: https://doc-
geonode.readthedocs.io/en/latest/005_dev_workshop/008_

contribute_geonode/work_with_github.html.

[65] Javier Luis Cánovas Izquierdo et al. “GiLA: GitHub label analyzer”. In: 2015 IEEE

22nd International Conference on Software Analysis, Evolution, and Reengineering

(SANER). 2015, pp. 479–483. DOI: 10.1109/SANER.2015.7081860.

[66] Zhifang Liao et al. “Exploring the characteristics of issue-related behaviors in
GitHub using visualization techniques”. English. In: IEEE Access 6 (2018). Ac-
ceptance from VoR OA article however no CC licence on article (see p1 of VoR).
Applied ’no exception’ as article doesn’t meet our definition for Gold exception. ET
14/1/20 ET, pp. 24003–24015. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2018.
2810295.

[67] Steve Gordon. WORKING ON YOUR FIRST GITHUB ISSUE. URL: https://
www.stevejgordon.co.uk/working-on-your-first-github-

issue.

[68] Yu Zhou et al. “Combining Text Mining and Data Mining for Bug Report Classi-
fication”. In: 2014 IEEE International Conference on Software Maintenance and

Evolution (2014), pp. 311–320.

[69] Rafael Kallis et al. “NLBSE’22 Tool Competition”. In: Proceedings of The 1st Inter-

national Workshop on Natural Language-based Software Engineering (NLBSE’22).
2022.

[70] Ilya Grigorik. GH Archive. URL: https://www.gharchive.org/.

[71] Google BigQuery. URL: https://cloud.google.com/bigquery/.

[72] Marco Polignano et al. “ALBERTO: Italian BERT Language Understanding Model
for NLP Challenging Tasks Based on Tweets”. In: Nov. 2019.

51

https://doi.org/10.1109/ICSME.2014.47
https://doi.org/10.1109/ESEM.2017.19
https://doi.org/10.1109/ESEM.2017.19
https://doc-geonode.readthedocs.io/en/latest/005_dev_workshop/008_contribute_geonode/work_with_github.html
https://doc-geonode.readthedocs.io/en/latest/005_dev_workshop/008_contribute_geonode/work_with_github.html
https://doc-geonode.readthedocs.io/en/latest/005_dev_workshop/008_contribute_geonode/work_with_github.html
https://doi.org/10.1109/SANER.2015.7081860
https://doi.org/10.1109/ACCESS.2018.2810295
https://doi.org/10.1109/ACCESS.2018.2810295
https://www.stevejgordon.co.uk/working-on-your-first-github-issue
https://www.stevejgordon.co.uk/working-on-your-first-github-issue
https://www.stevejgordon.co.uk/working-on-your-first-github-issue
https://www.gharchive.org/
https://cloud.google.com/bigquery/

[73] Marco Polignano et al. “Lexicon Enriched Hybrid Hate Speech Detection with
Human-Centered Explanations”. In: UMAP ’22 Adjunct. Barcelona, Spain: As-
sociation for Computing Machinery, 2022, pp. 184–191. ISBN: 9781450392327.
DOI: 10.1145/3511047.3537688. URL: https://doi.org/10.1145/
3511047.3537688.

[74] Marco Pota et al. “An Effective BERT-Based Pipeline for Twitter Sentiment Anal-
ysis: A Case Study in Italian”. In: Sensors 21.1 (2021). ISSN: 1424-8220. DOI:
10.3390/s21010133. URL: https://www.mdpi.com/1424-8220/
21/1/133.

[75] Christos Baziotis, Nikos Pelekis, and Christos Doulkeridis. “DataStories at SemEval-
2017 Task 4: Deep LSTM with Attention for Message-level and Topic-based Senti-
ment Analysis”. In: Proceedings of the 11th International Workshop on Semantic

Evaluation (SemEval-2017). Vancouver, Canada: Association for Computational
Linguistics, Aug. 2017, pp. 747–754. DOI: 10.18653/v1/S17-2126. URL:
https://aclanthology.org/S17-2126.

[76] Nguyen Manh Duc Tuan and Pham Quang Nhat Minh. Multimodal Fusion with

BERT and Attention Mechanism for Fake News Detection. 2021. DOI: 10.48550/
ARXIV.2104.11476. URL: https://arxiv.org/abs/2104.11476.

[77] Maliheh Izadi. CatIss: An Intelligent Tool for Categorizing Issues Reports us-

ing Transformers. 2022. DOI: https://doi.org/10.1145/3528588.
3528662. URL: https://arxiv.org/pdf/2203.17196.pdf.

[78] Shikhar Bharadwaj and Tushar Kadam. GitHub Issue Classification Using BERT-

Style Models. 2022.

[79] Zhangyin Feng et al. CodeBERT: A Pre-Trained Model for Programming and Nat-

ural Languages. 2020. DOI: 10.48550/ARXIV.2002.08155. URL: https:
//arxiv.org/abs/2002.08155.

[80] Zhilin Yang et al. XLNet: Generalized Autoregressive Pretraining for Language

Understanding. 2019. DOI: 10.48550/ARXIV.1906.08237. URL: https:
//arxiv.org/abs/1906.08237.

[81] Mohammed Latif Siddiq and Joanna C.S. Santos. BERT-Based GitHub Issue Report

Classification. 2022.

[82] Alexander Trautsch and Steffen Herbold. Predicting Issue Types with seBERT. 2022.

52

https://doi.org/10.1145/3511047.3537688
https://doi.org/10.1145/3511047.3537688
https://doi.org/10.1145/3511047.3537688
https://doi.org/10.3390/s21010133
https://www.mdpi.com/1424-8220/21/1/133
https://www.mdpi.com/1424-8220/21/1/133
https://doi.org/10.18653/v1/S17-2126
https://aclanthology.org/S17-2126
https://doi.org/10.48550/ARXIV.2104.11476
https://doi.org/10.48550/ARXIV.2104.11476
https://arxiv.org/abs/2104.11476
https://doi.org/https://doi.org/10.1145/3528588.3528662
https://doi.org/https://doi.org/10.1145/3528588.3528662
https://arxiv.org/pdf/2203.17196.pdf
https://doi.org/10.48550/ARXIV.2002.08155
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://doi.org/10.48550/ARXIV.1906.08237
https://arxiv.org/abs/1906.08237
https://arxiv.org/abs/1906.08237

[83] Julian von der Mosel, Alexander Trautsch, and Steffen Herbold. On the validity

of pre-trained transformers for natural language processing in the software engi-

neering domain. 2021. DOI: 10.48550/ARXIV.2109.04738. URL: https:
//arxiv.org/abs/2109.04738.

[84] Giuseppe Colavito, Filippo Lanubile, and Nicole Novielli. Issue Report Classifica-

tion Using Pre-trained Language Models. 2022. DOI: https://doi.org/10.
1145/3528588.3528659.

[85] Sebastian Hofstätter and Allan Hanbury. Let’s measure run time! Extending the IR

replicability infrastructure to include performance aspects. 2019. DOI: 10.48550/
ARXIV.1907.04614. URL: https://arxiv.org/abs/1907.04614.

[86] Eirini Kalliamvakou et al. “The Promises and Perils of Mining GitHub”. In: Pro-

ceedings of the 11th Working Conference on Mining Software Repositories. MSR
2014. Hyderabad, India: Association for Computing Machinery, 2014, pp. 92–101.
ISBN: 9781450328630. DOI: 10.1145/2597073.2597074. URL: https:
//doi.org/10.1145/2597073.2597074.

[87] Sumon Biswas et al. “Boa Meets Python: A Boa Dataset of Data Science Software
in Python Language”. In: 2019 IEEE/ACM 16th International Conference on Mining

Software Repositories (MSR). 2019, pp. 577–581. DOI: 10.1109/MSR.2019.
00086.

[88] Nuthan Munaiah et al. “Curating GitHub for engineered software projects”. In: (Dec.
2016). DOI: 10.7287/PEERJ.PREPRINTS.2617.

[89] Bogdan Vasilescu et al. “Continuous Integration in a Social-Coding World: Empiri-
cal Evidence from GitHub”. In: 2014 IEEE International Conference on Software

Maintenance and Evolution. 2014, pp. 401–405. DOI: 10.1109/ICSME.2014.
62.

53

https://doi.org/10.48550/ARXIV.2109.04738
https://arxiv.org/abs/2109.04738
https://arxiv.org/abs/2109.04738
https://doi.org/https://doi.org/10.1145/3528588.3528659
https://doi.org/https://doi.org/10.1145/3528588.3528659
https://doi.org/10.48550/ARXIV.1907.04614
https://doi.org/10.48550/ARXIV.1907.04614
https://arxiv.org/abs/1907.04614
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1109/MSR.2019.00086
https://doi.org/10.1109/MSR.2019.00086
https://doi.org/10.7287/PEERJ.PREPRINTS.2617
https://doi.org/10.1109/ICSME.2014.62
https://doi.org/10.1109/ICSME.2014.62

	Introduction
	Thesis structure

	Background
	Issue Tracking
	Text Classification
	Pretrained Language Models
	Transformers and Attention
	BERT

	Issue Report Classification
	Related work
	Challenge description
	Dataset

	Methodology
	Research questions
	Pre-processing
	Model fine-tuning
	Training the Issue Classifiers
	Evaluation

	Results
	Comparison

	Discussion
	Error Analysis
	Error Examples

	Handling noise

	Conclusions
	Future Works

	List of Figures
	List of Tables
	References

