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1. Introduction

Automatic classification of issue types is crucial to support effective issue management and
prioritization. Software developers, testers and customers routinely submit issue reports to
software issue trackers to record the problems they face in using a software. The issues
are then directed to appropriate experts for analysis and fixing. However, submitters often
misclassify an improvement request as a bug and viceversa. This costs valuable developer
time. The person filing the issue may not always make a fine-grained distinction between
the different kinds of reports and instead file them as bugs only. In fact, research shows
misclassifications are commonplace [1, 2]. In an elaborate study involving more than 7000
issues spanning 5 projects, researchers found that 33.8% of all reports are misclassified
[2]. The consequence of misclassification could be costly: developers must spend their
precious time to look into the reports and relabel them correctly. This is necessary also to
understand which team should take charge of the issue. Hence it is worthwhile to explore

if this classification can be done automatically, since it would be of great practical utility.

[3].

Previous studies have proposed supervised approaches to address the task of automat-
ically predicting the label to assign to a new issue. Early studies leveraged traditional
machine learning, such as decision trees, naive Bayes classifiers, and logistic regression in
combination with text-based features, achieving performance between 77% and 82% of
accuracy [1]. More recently, researchers started to use deep learning and, in particular, for

natural language processing, pre-trained language models, such as BERT and its variants [4,
51

Kallis et al. [6, 7] proposed Ticket Tagger, which automatically predicts the labels to assign
to issues at write time, with the aim of facilitating the issue management and prioritization
processes. Ticket Tagger is a machine learning classifier that predicts the label to assign
to issues trained on GitHub data. Specifically, Ticket Tagger leverages only the textual
content of an issue title and body, whose vectorial representation is based on fastText [8],

an open-source tool released by Facebook Al research.

In this work, we describe the systems we developed to participate in the tool competition
of NLBSE’22 on automatic labeling of GitHub issues. The goal of the NLBSE’22 tool

competition [9] is to build a classifier for automatic issue report classification. Ticket



Tagger [6, 7] is identified by the challenge organizer as the baseline system and all
participants are invited to compare the performance of the proposed system with it (F1 =
.8591). The organizers provided a dataset including more than 800K GitHub issue reports
labeled as either bug, enhancement, or question, in line with the intent of the author of the
issue [6, 7]. All issues are extracted from real open-source projects. The participants were
invited to use the dataset to train and evaluate an approach for automatic classification of

the three issue types in the dataset:

= bug,
m enhancement,

m question.

Inspired by recent advances in distributional semantics [10, 11, 12], we aim at assessing to
what extent the text information only could be used to enhance the state of the art in auto-
matic issue labeling. Specifically, we propose and evaluate two different approaches based
on supervised learning that leverage the information available at the time of writing, that is
the title and body of the issue and the issue-author association relation (e.g., collaborator,
owner, etc.). We experiment with fine-tuning of BERT [10], a task-agnostic pre-trained
language-model released by Google, and its variants ALBERT [12] and RoBERTa [11]. To
combine text and author information we also train a multilayer perceptron (MLP) classifier
that leverages the BERT-based embedding of the issue with a one-hot encoding representa-
tion of the author-issue relation. Both models outperform the baseline and we observe the
best performance (F1 = .8591) with the model based on textual information only. All the
replication material is available on GitHub [13]. We then perform an error analysis which

is useful in order to understand the main causes of errors in the classification of the test set.

1.1 Thesis structure

In the second chapter, a general theoretical background for issue tracking and pretrained
language models is given, along with a glance at the language models that have been
taken into consideration for this thesis. In the third chapter we describe the issue report
classification task, the NLBSE2?2 challenge and give all the details about the dataset used
for our study. In the fourth chapter we describe the methodology used for solving the issue
report classification task. In the fifth chapter we show the results of our studies, followed
by a discussion about results and errors performed by the classifier in the sixth chapter. In

the seventh chapter we report the conclusions together with possible future works.



2. Background

2.1 Issue Tracking

Just as strong leadership is required to guide a team toward success, so too are strong com-
munication and collaboration tools essential in completing that journey. Much research has
been done in the field of computer-supported cooperative work and software engineering to
examine how software teams communicate with each other and coordinate their work. The
majority of developers spends their time interacting with co-workers [14]. Other studies
argued that software development is both knowledge-intensive and collaborative [15]. De-
velopment teams use Issue Tracking Systems (ITS) such as Bugzilla, Github Issues, GitLab
Issues, JIRA to track issues, including bugs to be fixed or features to be implemented. Over

the years ITS have emerged as a central tool for planning and organizing development

work [16], and for communicating with users and other stakeholders [17] [18].
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Figure 1. Bugzilla, list of bugs in the KDE project, from [19]



In a project, new requirements are coming constantly. So, it is necessary to have tools

which allow somebody to fully and easily:

share the information across the team;

have an instant overview of the state of the software;

expertly decide about releasing;

set and update the importance of individual fixes and adjustments;

have a recorded history of changes.

An issue tracking system has the main function to track:

what should be fixed or created;

what the bug symptoms and appearances are, what actually doesn’t work;

how it should work the right way;

who reported the request, who confirmed, analyzed, implemented the solution, and
verified it;

when the request was reported, when it was fixed and when verified;

what led to the decision to choose one way of fixing instead of another;

what changes in code were made;

how long it took to handle the request.

Those insights about the state of the project are really useful for the developing team and,

if used in the right way, can bring the following benefits:

improve the quality of software;

increase satisfaction of users and customers;

ensure requests accountability;

improve communication in the team and also to customers;
increase of productivity of the team;

reduce expenses [20].

Issue trackers are often used by open-source development teams and they are a primary

and logical location for much of the distributed negotiation involved in resolving bugs,

through extended interactions that involve debate among developers, reaching consen-

sus, or soliciting management input [21, 22]. Works on issue tracking systems that has

primarily focused on improving the quality of bug reports [16], identifying who should

work on a given issue [23], and improving developers’ ability to detect defects in their



systems [24] [17].

Issues are units of information usually including a summary (title), a description, and a

number of properties like status, priority, and fix version.

0 sms-1 4% Givefeedback @ 2 & oo X
Add app alert for changed weather events STATus
@ Attach Create subtask @ Linkissue
ASSIGNEE
&8 il Admin
Attachments
s T § REPORTER
.|
= g Dan K
I DEVELOPMENT
g + Create branch
STORY POINTS
None
Linked issues
relates to TIME TRACKING
] s&-45 Implement a method to notify users of adverse weather patterns A DONE @ 4d 3h 30m logged

Activity Comments v

PRIORITY
T Medium

Dan K August 31, 2017, 11:05 AM
= Gil Admin I'm just having a look at this one now. Wondering if we can separate out the app v Show 3 more fields

notification part for Wazza to work on? Labels, Components and Original Estimate

@ Add a comment...
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Figure 2. An issue tracked by JIRA, from [25]

A key focus of ITSs is the evolutionary refinement of the issues [26] (also known as
iterative improvement), which means that information is gained and refined over time,
while developers and stakeholders collaborate to address the issues. Over the last two
decades, software engineering research has intensively studied issues and issue trackers,
often based on Bugzilla', Github 2, GitLab® and Jira*. The primary research focus has
been on the specific issue type of bug reports: the understanding and improvement of
information quality therein [16], and the prediction of bug properties such as severity [27,
28], assignee [29], and duplicate reports [30, 31, 32] for supporting software evolution and

maintenance. [33]
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Figure 3. An issue tracked by GitLab, from [34]



2.2 Text Classification

Text classification (TC) is the task of assigning predefined categories to free-text documents.
It can provide conceptual views of document collections and has important applications
in the real world. Instead of manually classifying documents or hand-crafting automatic
classification rules, statistical text categorization uses machine learning methods to learn
automatic classification rules based on human-labeled training documents [35]. TC is
being applied in many contexts, ranging from document indexing based on a controlled
vocabulary, to document filtering, automated metadata generation, word sense disambigua-
tion, population of hierarchical catalogues of Web resources, and in general any application
requiring document organization or selective and adaptive document dispatching. In the
’90s this approach has increasingly lost popularity (especially in the research community)
in favour of the machine learning paradigm, according to which a general inductive process
automatically builds an automatic text classifier by learning, from a set of preclassified
documents, the characteristics of the categories of interest. The advantages of this approach
are an accuracy comparable to that achieved by human experts, and a considerable savings
in terms of expert manpower, since no intervention from either knowledge engineers or
domain experts is needed for the construction of the classifier or for its porting to a different
set of categories [36]. It is useful to distinguish among TC problems based on the number

of class to which a document can belong:

m Binary classification, if there are only two possible classes (e.g.: spam / non-spam),

m Multi-class classification, if there are more than two possible classes and each
document can belong exclusively to one of the classes,

m Multi-label classification, if there are more than two possible classes and each

document can belong to two or more classes.

Multi-class and multi-label problems are often faced by reducing the task to k different

binary classification subtasks, one for each category.

For each binary classification subtask, the members of the category are treated as positive
examples, the others are treated as negative examples [36]. Machine Learning and deep
learning based approaches consist in analyzing annotated corpora of texts inferring which
features of the text, typically in a bag of words fashion [37] or by n-grams, are relevant
for the classification in an automatic way [38]. The most classical approach for text
classification consists of extracting basic corpus statistics such as the word frequency

or TF-IDF [39] to generate large sparse embedding vectors with a size equal to the



vocabulary size. In these cases, Latent Semantic Analysis [40] may be useful for reducing
the dimensionality of such vectors through the Singular Value Decomposition (SVD).
As shown in [41], on some occasions, models using TF-IDF, despite being simpler and
unable to capture complex text patterns, can achieve better results than more complex
neural-based approaches [42]. Neural language models learn to represent textual-tokens
(such as words) as dense vectors, referred as to word embeddings, in a self-supervised
fashion. These learned representations can then be used for various NLP applications. One
popular neural language model is word2vec [43], which learns to map the words that come
in similar contexts to similar vector representations. The learned word2vec representations
also allow for some simple algebraic operations on word embeddings in vector space
[44]. Previous work uses various neural models to learn text representation, including
convolution models [45, 41, 46, 47, 48, 49], recurrent models [50, 51, 52], and attention
mechanisms [53, 54] [55]. More recently, the Transformers architecture [56], replacing
the recurrence with the self-attention mechanism, enabled that large pre-trained language
models could now be used to address several NLP tasks, leading to the state-of-the-art in
many of these applications [44]. We will go into the details about pre-trained language

models in the next section.

2.3 Pretrained Language Models

2.3.1 Transformers and Attention

A Transformer is a model architecture eschewing recurrence and instead relying entirely
on an attention mechanism to draw global dependencies between input and output. Most
competitive neural sequence transduction models have an encoder-decoder structure. In
a transformer, the encoder maps an input sequence of symbol representations (1, ..., x,,)
to a sequence of continuous representations z = (z1, ..., 2, ). Given z, the decoder then
generates an output sequence (yi, ..., ¥, ) of symbols one element at a time. At each step
the model is auto-regressive, consuming the previously generated symbols as additional
input when generating the next. The transformer follows this overall architecture using
stacked self-attention and point-wise, fully connected layers for both the encoder and

decoder.

The encoder is composed of a stack of N identical layers. Each layer has two sub-layers.
The first is a multi-head self-attention mechanism, and the second is a simple, position
wise fully connected feed-forward network. A residual connection around each of the two

sub-layers is employed, followed by layer normalization.

10
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Figure 4. Illustration of Tranformers architecture, from [56]
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The decoder is also composed of a stack of N identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs
multi-head attention over the output of the encoder stack. Similar to the encoder, residual
connections around each of the sub-layers are employed, followed by layer normalization.
The self-attention sub-layer is modified in the decoder stack to prevent positions from
attending to subsequent positions. This ensures that the predictions for position ¢ can

depend only on the known outputs at positions less than <.

The attention function which is used in [56] is called Scaled Dot-Product Attention. The
input consists of gueries and keys of dimension dk, and values of dimension dv. The dot
products of the query with all keys is computed, then divided by v/ dk, and apply a softmax

function to obtain the weights on the values. The matrix of outputs is computed as:

Attention(@ K ‘/’) = softmax ( ) V
) Ly
V dk

Instead of performing a single attention function with d,;,.4.;-dimensional keys, values
and queries, it is beneficial to linearly project the queries, keys and values A times with
different, learned linear projections to dy, d; and d, dimensions, respectively. On each of
these projected versions of queries, keys and values, the attention function is performed in
parallel, yielding d,-dimensional output values. These are concatenated and once again
projected, resulting in the final values. Multi-head attention allows the model to jointly

attend to information from different representation subspaces at different positions.

MultiHead(Q, K, V') = Concat (head,, - - - , head;,) W©°
head; = Attention(QW<, KWX VIvY)

So we have a new set of parameters (multiple queries, keys and values). The heads are
concatenated and multiplied by a new parameter matrix W . This setting helps focusing
on more parts of discourse. The Transformer uses multi-head attention in three different

ways:

m In encoder-decoder attention layers, the queries come from the previous decoder
layer, and the memory keys and values come from the output of the encoder. This
allows every position in the decoder to attend over all positions in the input sequence.

m The encoder contains self-attention layers. In a self-attention layer all of the keys,

12



values and queries come from the same place, in this case, the output of the previous
layer in the encoder. Each position in the encoder can attend to all positions in the
previous layer of the encoder.

» Similarly, self-attention layers in the decoder allow each position in the decoder to
attend to all positions in the decoder up to and including that position. It is important
to prevent leftward information flow in the decoder to preserve the auto-regressive
property. We implement this inside of scaled dot-product attention by masking out
(setting to — inf) all values in the input of the softmax which correspond to illegal

connections

So, the encoder start by processing the input sequence. The output of the top encoder is then
transformed into a set of attention vectors K and V. These are to be used by each decoder
in its encoder-decoder attention layer which helps the decoder focus on appropriate places
in the input sequence The self attention layers in the decoder operate in a slightly different
way, they mask future positions before the softmax step in the self-attention calculation.
The encoder-decoder attention” layer works just like multiheaded self-attention, except
it creates its queries matrix from the layer below it, and takes the keys and values matrix
from the output of the encoder stack. [56, 57, 58]

Layer:| 5 5| Attention:| Input - Input v

The_ The_
animal_ animal_
didn_ didn_
t_ t_
Cross_ Cross_
the the_
street_ street_
because_ because_
it_ it_
was_ was_
too_ too_
tire tire

d d

Figure 5. Illustration of the dependencies encoded by the self-attention layers . As we
encode the word "it", one attention head is focusing most on "the animal", while another is
focusing on "tired" — in a sense, the model’s representation of the word "it" bakes in some
of the representation of both "animal" and "tired", from [57]
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2.3.2 BERT

BERT [10] is a language representation model, which stands for "Bidirectional Encoder
Representations from Transformers". It is designed to pretrain deep bidirectional repre-
sentations from unlabeled text by jointly conditioning on both left and right context in all
layers. The pre-trained BERT model can be finetuned with just one additional output layer
to create state-of-the-art models for a wide range of tasks, such as question answering and
language inference, without substantial taskspecific architecture modifications. BERT’s
model architecture is a multi-layer bidirectional Transformer encoder. There are two

existing strategies for applying pre-trained language representations to downstream tasks:

m feature-based,

m fine-tuning

24 ENCODER

4 ENCODER
12 ENCODER
ENCODER

2 ENCODER 2 ENCODER

1 ENCODER 1 ENCODER

.
.
.
w
.
.
.

BERTBgase BERTLarae

Figure 6. Different variants of BERT, from [59].
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2 [ ENCODER

—

1 [ ENCODER

[cLs)

BERT

Figure 7. BERT creating word embeddings, from [59].

Feature-based approach, such as ELMo [60], uses task-specific architectures that include

the pre-trained representations as additional features.

Fine-tuning introduces minimal task-specific parameters, and is trained on the downstream

14



tasks by simply fine-tuning all pretrained parameters.

The major limitation is that standard language models are unidirectional, and this limits the
choice of architectures that can be used during pre-training. BERT alleviates the previously
mentioned unidirectionality constraint by using a masked language model (MLM) pre-
training objective. The masked language model randomly masks some of the tokens from
the input, and the objective is to predict the original vocabulary id of the masked word
based only on its context. The MLLM objective enables the representation to fuse the left
and the right context, which allows us to pretrain a deep bidirectional Transformer. In
addition to the masked language model, the next sentence prediction task is used, that

jointly pretrains text-pair representations.

After BERT’s release, Facebook researchers found out that it was undertrained and that the
next sentence prediction task was not so crucial in the training process. ROBERTa [11] has
the same architecture as BERT but is trained on a bigger dataset, with longer sequences,
without using the NSP task and with some small changes to the masking process used
in the MLM task. AIBERT [12] is a BERT model which leverages parameter reduction

techniques to lower memory consumption and increase the training speed of BERT.
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3. Issue Report Classification

3.1 Related work

Issue tracking systems are important means for maintainers to enable rigorous yet effective
software evolution tasks. In issue tracking systems maintainers report tickets or potential
problems, manage them and keep track of their progress. But as useful issue tracking
systems might be, many developers still end up with a rapidly growing workload and lose
control of it [61, 62]. Github! provides an integrated lightweight issue tracking system, in
which issue submitters are only required to provide a short textual abstract, containing a
title and an optional description to report a new issue to a project hosted on GitHub. While
this simplified process of reporting issues decreases the barrier to entry and attracts more
inexperienced external contributors, it complicates the work of the development teams for
maintaining the software, as several hundreds of issues of different nature (e.g., asking

questions, proposing features, signaling bugs) and quality are usually submitted [63].

The no-conflict mode should be the default Edit
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thewebdreamer opened this issue 3 days ago - 10 comments

: thewebdreamer commented 3 days ago Labels
is
The no-conflict mode should be the default behaviour. Why would a Bootstrap client need to implement

this?
Milestone

cvrebert commented 3 days ago
Assignee

| believe no-conflict-is-not-the-default is the norm for jQuery plugins?

Notifications

thewebd ted 3 d
: ewebdreamer commen ays ago G* Subscribe

It is true that it is the norm for jQuery plugins.
3 participants

Couldn't there be a clash with other jQuery plugins with the current implementation of Bootstrap though? o H
Figure 8. Example of GitHub issue, from [64].

To cope with these problems, GitHub also offers a customizable labeling system, which

can be used by developers to mark and manage issue reports. In particular, labels can

"https://www.github.com/
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give immediate clues about the issues (e.g., what sort of topic the issue is about, what
development task the issue is related to, or what priority the issue has) and are also useful for
project administrators, since they can serve both as classification and filtering mechanism,
thus facilitating the managing of the project [65]. However, manually assigning labels
to issues is a labor-intensive and time-consuming task for project managers [63]. Indeed,
although labeling has a positive impact on the effectiveness of issue processing [66], the

labeling mechanism is scarcely used on GitHub [61] [7].

I HTBox / aIIReady @ unwatch = 117 o Unstar = 663 Yrork 512

(D Issues 226 Pull requests 4 Projects 2 Wik: Insights Settings

32 labels

ES ro xe

m - X
devops £ *®
duplicate 4 XD
enhancement e x

ru x

1 open issue # Edit X Delete

Figure 9. Custom labels in GitHub Issues, from [67].

Previous studies presented several approaches to automatically categorize issues posted
in bug tracking systems. For example, in is showed that machine learning models can be
used in order to discriminate bugs from other kinds of issues. In [2], six different issue
categories are introduced — bug, feature request, improvement request, documentation
request, refactoring request, and others — and demonstrated that often developers and
maintainers assign the wrong issue category to the reports. To address this problem, in
[68] structured data with unstructured free-text data are combined to train a classifier able
to predict with high accuracy if a bug report is actually a bug or another kind of issue.
Unfortunately, no structured information could be found on GitHub issues, according to

the GitHub issue tracking lightweight structure [7]. Recently, Kallis et al. [7] proposed

17



Ticket Tagger, a machine learning classifier that predicts the label to assign to issues trained
on GitHub data. Specifically, Ticket Tagger leverages only the textual content of an issue
title and body, whose vectorial representation is based on fastText [8], an open-source tool

released by Facebook Al research.

3.2 Challenge description

In this work we describe the systems we developed to participate in the tool competition of
NLBSE’22 on automatic labeling of GitHub issues. NLBSE’22 is the Ist International
Workshop on Natural Language-based Software Engineering. It was co-located with
ICSE 2022 and was held on the 8th of May 2022. The first edition of the NLBSE’22
tool competition was on automatic issue report classification, an important task in issue

management and prioritization.

NL-BASED SOFTWARE ENGINEERING *()RGANIZATION ¥¥ TOOL COMPETITION 5] KEYNOTE & TUTORIAL 5] PROGRAM 8 venve

NLBSE 2022

The st Intl: Workshop on Natural Language-based Software Engineering
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May8, 2022

Tool Competition

Important Dates

Tool competition slides 2 PAPER/TOOL SUBMISSION
Introduction February 21,2022
ACCEPTANCE AND COMPETITION RESULTS
NOTIFICATION
MNLP-based approaches and tools have been proposed to improve the efficiency of software engineers,
processes, and products, by automatically processing natural language artifacts (issues, emails, commits, etc.) March 4, 2022
. . . . P - CAMERA-READY PAPER SUBMISSION
We believe that the availability of accurate tools is becorming increasingly necessary to improve Software
Engineering (SE) processes. One important process is issue management and prioritization where developers March 22, 2022
have to understand, classify, prioritize, assign, etc. incoming issues reported by end-users and developers,
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Figure 10. Tool Competition page of the NLBSE’22 workshop

For the competition, a dataset encompassing more than 800k labeled issue reports (as bugs,
enhancements, and questions) extracted from real open-source projects was provided. The
goal was to develop a classification model leveraging this dataset and compare the achieved
results against a proposed baseline approach, TicketTagger (based on FastText) [7, 6]. The
submissions were ranked based on the F1-micro score achieved by the proposed classifiers

on the test set, as indicated in the papers. While the F1-score was used for ranking the
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models and determining the winner of the competition, the participants were also asked
to report the following metrics: precision, recall and F1 for each class. We report the
formulas below. TP, FP, TN, and FN indicates number of True Positives, False Positives,

True Negatives, and False negatives, respectively. We denote a generic class with c.

TP
p=__-"°¢
" TP.+FP,
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fe = TP.+ FN.,
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Fl.=="-—-—-°<""°
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Note that micro-average precision and recall are the same as micro-average F1-score. Partic-
ipants were free to select and transform variables from the training set, but no new sources
could have been added. In other words, any inputs or features used to create the classifier,
had to be derived from the provided training set. Practises like preprocessing, sampling,
over/under-sampling, selecting a subset of the attributes, perform feature-engineering, split
the training set into a model-finetuning validation set, etc. were allowed. The evaluation
was performed on the entire test set only. No sampling, rebalancing, undersampling or

oversampling techniques were allowed on the test set [69].

3.2.1 Dataset

The issues in the dataset were extracted from The GitHub Archive [70] using Google
BigQuery [71]. The dataset consists of more than 800K Github issue-reports extracted
from real open-source projects. The organizers of the tool competition selected all the
closed issues during the first semester of 2021 (from January 1st 2021 to May 31st 2021)
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that contained any of the labels bug, enhancement, and question at the issue closing time.
The dataset was given in CSV format without applying any preprocessing on the issues
[69]. We use this dataset, distributed by the tool competition organizers [9, 6, 7], to take
part to the NLBSE’22 Tool Competition.

For each issue, the following features were collected and made available as dataset:

m issue url

m label

m creation date

m issue author association
m repository url

m title

= body

The label can be one of the following:

m bug, which means that the issue contains a bug report to be fixed,
m enhancement, issues which contain improvement and new feature requests,

m question, asked by an user about the usage of the software.

Labels can be assigned by the user who opened the issue or by repository maintainers.
In case of multiple labels, the most recent is taken as ground truth. The issue author
association is the role played in the repository by the person who opened the issue. It can

have the following values:

m OWNer,
m contributor,
m member,

= collaborator,
m Nnone,

m mannequin.

From the set of features, the more relevant for our task are title, body, issue author
association and obviously, the label. The text of title and body is written in Markdown
format. The tool competition organizers distributed the dataset already split in train and test

set, as shown in Table 1. Both the training and the test set were available at the beginning
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of the Tool Competition.

Table 1. Dataset with label distribution.

Train set Test set
bug 361,103 (50%) | 40,288 (50%)
enhancement | 299,374 (41%) | 33,203 (41%)
question 62,422  (9%) | 7,027 (9%)
total 722,899 80,518

The distribution of the labels is the same for both training and test set. Labels are unbal-
anced, with bugs (50%) and enhancement (41%) being better represented than question

(9%), which is the minority class.
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4. Methodology

4.1 Research questions

With our work we aim at understanding if the issue report classification task can be faced

using only the textual information, using state of the art pretrained language models.

RQ1: To what extent we can leverage pre-trained language models to build an automatic

classifier for GitHub issue labeling?

Furthermore, we aim at understanding if including non-textual information about the issues,

such as the issue-author associaton can improve the performance.

RQ2: To what extent the issue-author association contribute to improve the perfromance

of a classifier modeling textual information based on pre-trained models?

Unfortunately, other non-textual features were not available and it was not possible to
integrate them, as specified in the competition rules. During the competition we analysed
manually some of the issues, noticing that data were very noisy. So, as a follow-up study
after the competition deadline, we tried to filter out that noise from our data to achieve

better performances.

RQ3: How can we filter out noisy data? And how will the classifier perform on the filtered
data?

4.2 Pre-processing

As a first pre-processing step, we identify text patterns indicating non-textual items such as
images, links, code snippets and replace them with ad-hoc tokens (e.g <img> for images).
Then, we perform further text normalization step using ekphrasis Text Pre-Processor’,

which is able to identify other patterns such as:

s URLs,

'https://github.com/cbaziotis/ekphrasis
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m email addresses,

m percent or currency symbols,
= phone numbers,

m user mention,

m time,

m date,

= numbers.

This preprocessing step is very common in other studies using pretrained language models
[72, 73, 74,75, 76]. We replace those items with ad hoc tokens. We use ekphrasis also
to unpack hashtags, contractions and emojis. The idea is that we don’t want to model the
link string, the image name, or the code in our text. We just want to model the presence or
not of such elements. We want to avoid modeling code as normal text in order to avoid
bias on some specific repositories or specific code snippets. Our model should be able to
classify new issues incorporating unseen code (maybe using brand new repositories, which
are never used in the training set). Since the documents will be fed into either BERT or its
variants, we encode all the documents in the dataset using the model-specific tokenizer. To
avoid exceeding the GPU memory capacity, we pad/truncate each document to 128 tokens,

in line with previous work [4].

4.3 Model fine-tuning

We implement a supervised approach by leveraging state-of-the-art models based on
transformers. Specifically, we experimented with fine-tuning of BERT-based models in

two different settings as depicted in Figure 11:

m In the first setting (Classifier 1 in the figure), we leverage the text content of the issue
(title and body) and fine-tune the language model to obtain the final classifier.

m In the second setting (Classifier 2 in the figure), we combine the textual information
with the information provided by the author-association field and train a feed-forward

network.

As a preliminary step to both approaches, we need to identify the best pre-trained language
model to use for the issue classification task. In this study, we experiment with three state

of the art pretrained language models:
= BERT [10],
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Figure 11. The two classifiers implemented for issue labeling.

= ALBERT[12],
s RoBERTa[11].

For BERT, we use both the base model and the large model. To select the best model, we

perform fine-tuning of each model using the train set. Specifically:

We split the train set in two subsets, one containing 90% of the issues and the other

containing 10% of the issues.

We train each of the models on the first subset.

We test each of the models on the second subset (validation set)

m We compare the performances of all the models to select the best one.
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This procedure is illustrated in Figure 12. For each language model, the fine-tuning phase

E BERT RoBERTa i
Stratified - ! - - |
sampling N - | i . :
— E BERT-large AIBERT 5
Train90% o o !
Assessment of
performance
Trainset ' o v
" BERT 'RoBERTa i
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Figure 12. Illustration of the process adopted to select the best BERT model

is done in 4 epochs. To select the best number of epochs for each model, we test all
the models after each epoch. In the training phase we used the Adam optimizer with
weight decay. As optimizer parameters we used a learning rate = 2 x 1075 and a epsilon =
1x 1078,

Table 2 reports the results of the performance assessment on the validation set for all
models we experimented with. Given the small differences in the overall micro average
F1 observed for all models, we decided to pick as best model the one achieving the best
F1 on the minority class, which is the guestion class. As a result of this validation phase,
we select ROBERTa as the most promising language model to be used for training the

classifier for the challenge submission.

4.4 Training the Issue Classifiers

Based on the performance observed on the validation set, we decided to use ROBERTa
for training the classifier for the challenge submission, using the full train set provided
by the organizers. As a first step, we fine-tune ROBERTa using the full train set provided
by the organizer. We replicate the same procedure adopted for model selection, i.e. we

fine-tune ROBERTa using the issue title and body, which we pad/truncate to consistently
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represent documents with the same length (128 tokens). Then, we use the fine-tuned
RoBERTa model for building the two classifiers. For Classifier 1, we simply rely on the
textual information of the GitHub issues, that is on the concatenation of each issue title
and body. For Classifier 2, we build a multilayer perceptron (MLP) classifier that leverages
the combination of the textual information of the issues with the information regarding the

issue-author association contained in the dataset:

m We extract the RoBERTa-based embeddings of each document, i.e., the concatenation
of the title and body of the issues, using the last hidden layer before the classification
layer of the fine-tuned model, obtaining a 768 dimension embedding.

m We compute the one-hot encoding vectors for each value of the issue-author associa-
tion attribute (six dimensions overall, one for each possible value of the issue-author
association attribute).

= We then concatenate the RoOBERTa-based embedding with the one-hot-encoding

representation of the issue-author association information, as illustrated in 13.

Issue author association

BERT embedding One-hot encoding

Figure 13. Concatenation of the BERT embedding with the issue author association one-
hot encoding vector

The new vector is fed into a multi-layer perceptron with two hidden layers of size 256
and 128, respectively. In order to train the network, we use stratifed sampling to split the
training set into train (90%) and a validation set (10%). The network is then trained with

the following parameters:
m batch size = 32,

m learning rate = 1 x 107°

» Adam optimizer with learning rate =2 x 107° and a epsilon =1 x 1075,
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m epochs = 100

We set up and use an early stopping criterion with patience = 5. We use a callback function
to select the model achieving the best performance once the early stopping condition is
verified. For the training, we use NLLLoss and set the weights of the loss function as

inversely proportional to the class frequencies in the training data.

4.5 Evaluation

In line with the guidelines of the challenge, we provide the evaluation of the two classifiers
on the test set in terms of micro-F1. Given the unbalance distribution of the labels in the
dataset, we also report the macro-F1 because micro-averaging is known to be influenced
by the performance on the majority class. Conversely, the ability of a classifier to correctly
identify items belonging to classes with few training instances is correctly assessed by
the macro-average. To address the problem of class imbalance in the training data, we
also experimented with undersampling, thus obtaining a balanced dataset based on the
number of items included in the minority class of questions. However, we observed a
worse performance with respect to the one observed when the full train set in use. As
such, we report the performance of the models trained using the complete train set. The
goal of our experiments is twofold. On the one hand we compare our approaches with
the performance of Ticker Tagger, the FastText-based approach provided as a baseline
by the challenge organizer. Ticket Tagger was originally trained and validated on 30,000
GiHhub issues [6, 7]. To compute the baseline performance for the tool competition, its
performance was reassessed on the challenge test set using the Colab notebook provided
by the organizers. We report the baseline performance in Table 3. We also compare our
models with the other ones submitted for the tool competition. On the other hand we aim at
assessing to what extent a simple approach based on textual information enable automatic
labeling of GitHub issues.
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5. Results

In Table 3, we report the performance of the two classifiers and provide comparison with
the baseline approach based on fastText. Both our classifiers outperform the baseline and
they achieve a performance comparable to the one reported by previous work on issue
classification based on contextual embeddings [5], as done in this study. In particular,
Classifier 1 (RoBERTa fine-tuned) achieves the best micro F1 (.8591). As for Classifier 2
(MLP), which also includes consideration of the author-issue association, we observe a
lower micro F1 (.8295). However, the recall for the minority class question is substantially
improved up to .7537, as also reflected by the higher macro average recall (.7774 and
.8092 for Classifier 1 and 2, respectively). Albeit the overall performance is substantially
unvaried in terms of micro F1, the choice between the RoBERTa-based and MLP-based
for practical usage might not be trivial as ROBERTa optimizes the precision of the minority

class while the MLP achieves a better recall.

For the sake of the challenge submission, we identify the RoBERTa-based classifier as the

best performing one, given its higher micro-average F1.

Table 3. Performance of the system on the test.

Classifier 1: RoBERTa Classifier 2: MLP FastText Baseline
Title + Body Author + Title + Body Title + Body
Class Prec Rec F1 Prec Rec F1 Prec  Rec F1
bug 8750 .8988 .8867 | .8934 8346 .8630 | .8314 .8725 .8515

enhanc. 8713 8743 8728 | .8797 .8394 .8591 | .8155 .8464 .8307
question | .6760 .5591 .6120 | .4727 .7537 .5810 | .6521 .3502 .4557
micro avg | .8591 .8591 .8591 | .8295 .8295 .8295 | .8162 .8162 .8162
macro avg | .8074 7774 .7905 | 7486 .8092 7677 | .7663 .6897 .7126

5.1 Comparison

Here we report a general overview of the tool competition submissions and results.

m [zadi [77] proposed Catlss, a fine-tuned pretrained RoOBERTa model [11] that uses
(as input) the issue text (title and body) concatenated with the issue timestamp,
author, and repository (the owner and repository name). The processing of the issues

included removal of exact duplicate issues (performed on the training set only), text
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normalization to replace content with a 